• Что можно приготовить из кальмаров: быстро и вкусно

    Основные понятия статики вошли в науку как результат многовековой практической деятельности человека. Они подтверждены многочислен­ными опытами и наблюдениями над природой.

    Одно из таких основных понятий - понятие мате­риальной точки .

    Тело можно рассматривать как мате­риальную точку , т. е. его можно представить геометрической точкой, в которой сосредоточена вся масса тела, в том случае, когда размеры тела не имеют значения в рассматриваемой задаче .

    Например, при изучении дви­жения планет и спутников их считают материальными точками , так как размеры планет и спутников пренебре­жимо малы по сравнению с размерами орбит . С другой стороны, изучая движение планеты (например, Земли) вокруг оси, ее уже нельзя считать материальной точкой.

    Тело можно считать материальной точкой во всех слу­чаях, когда все его точки совершают одинаковое движение. Например, поршень в двигателе внутреннего сгорания можно рассматривать как материальную точку, в которой сосредоточена вся масса этого поршня.

    Системой называется совокупность материальных то­чек , движения и положения которых взаимозависимы . Из приведенного определения следует, что любое физическое тело можно рассматривать как систему материальных точек .

    При изучении равновесия тел считают их абсолютно твердыми (или абсолютно жесткими), т. е. предполагают, что никакие внешние воздействия не вызывают изменения их размеров и формы и что расстояние между любыми двумя точками тела всегда остается неизменным .

    В дей­ствительности все тела под влиянием силовых воздей­ствий со стороны других тел меняют свои размеры и форму. Так, если стержень, например, из стали или дерева, сжать , его длина уменьшится , а при растяжении она соответственно увеличится (рис.а ).

    Изменяется также форма стержня, лежащего на двух опорах, при действии нагрузки, перпендикулярной его оси (рис. б ). Стержень при этом изгибается .

    В подавляющем большинстве случаев деформации тел (деталей), из которых состоят машины, аппараты и соору­жения, очень малы , и при изучении движения и равновесия этих объектов деформациями можно пренебречь .

    Таким образом, понятие абсолютно твердого тела является условным (абстракцией). Это понятие вводят с целью упрощения исследования законов равновесия и движения тел .

    Лишь изучив механику абсолютно твер­дого тела , можно приступить к изучению равновесия и движения деформируемых тел, жидкостей и др. При рас­четах на прочность необходимо учитывать деформации тел . В этих расчетах деформации играют существенную роль и пренебрегать ими нельзя .

    Статикой называется раздел механики, в котором излагается общее учение о силах и изучаются условия равновесия материальных тел, находящихся под действием сил.

    Под равновесием будем понимать состояние покоя тела по отношению к другим телам, например по отношению к Земле. Условия равновесия тела существенно зависят от агрегатного состояния этого тела. Равновесие жидких и газообразных тел изучается в курсах гидростатики или аэростатики. В общем курсе механики рассматриваются обычно только задачи о равновесии твердых тел.

    Все встречающиеся в природе твердые тела под влиянием внешних воздействий в той или иной мере изменяют свою форму (деформируются). Величины этих деформаций зависят от материала тел, их геометрической формы и размеров и от действующих нагрузок. Для обеспечения прочности различных инженерных сооружений и конструкций материал и размеры их частей подбирают так, чтобы деформации при действующих нагрузках были достаточно малы. Вследствие этого при изучении условий равновесия вполне допустимо пренебрегать малыми деформациями соответствующих твердых тел и рассматривать их как недеформируемые или абсолютно твердые. Абсолютно твердым телом называют такое тело, расстояние между каждыми двумя точками которого всегда остается постоянным. В дальнейшем при решении задач статики все тела рассматриваются как абсолютно твердые, хотя часто для краткости их называют просто твердыми телами.

    Состояние равновесия или движения данного тела зависит от характера его механических взаимодействий с другими телами. Величина, являющаяся основной мерой механического взаимодействия материальных тел, называется в механике силой.

    Сила - величина векторная. Ее действие на тело определяется: 1) числовым значением, или модулем силы, 2) направлением силы, 3) точкой приложения силы.

    Модуль силы находят путем ее сравнения с силой, принятой за единицу. Основной единицей измерения силы в Международной системе единиц (СИ) является 1 ньютон (1 Н).

    Длина этого отрезка выражает в выбранном масштабе модуль силы, направление отрезка соответствует направлению силы, точка А на рис. 1 является точкой приложения силы (силу можно изобразить и так, что точкой приложения будет конец силы). Прямая DE, вдоль которой направлена сила, называется линией действия силы. Условимся еще о следующих определениях.

    • 1. Системой сил будем называть совокупность сил, действующих на рассматриваемое тело (или тела). Если линии действия всех сил лежат в одной плоскости, система сил называется плоской, а если эти линии действия не лежат в одной плоскости,- пространственной. Кроме того, силы, линии действия которых пересекаются в одной точке, называются сходящимися, а силы, линии действия которых параллельны друг другу, - параллельными.
    • 2. Тело, которому из данного положения можно сообщить любое перемещение в пространстве, называется свободным.
    • 3. Если одну систему сил, действующих на свободное твердое тело, можно заменить другой системой, не изменяя при этом состояния покоя или движения, в котором находится тело, то такие две системы сил называются эквивалентными.
    • 4. Система сил, под действием которой свободное твердое тело может находиться в покое, называется уравновешенной или эквивалентной нулю.
    • 5. Если данная система сил эквивалентна одной силе, то эта сила называется равнодействующей данной системы сил.

    Сила, равная равнодействующей по модулю, прямо противоположная ей по направлению и действующая вдоль той же прямой, называется уравновешивающей силой.

    • 6. Силы, действующие на данное тело (или систему тел), можно разделить на внешние и внутренние. Внешними называются силы, которые действуют на это тело (или на тела системы) со стороны других тел, а внутренними - силы, с которыми части данного тела (или тела данной системы) действуют друг на друга.
    • 7. Сила, приложенная к телу в какой-нибудь одной его точке, называется сосредоточенной. Силы, действующие на все точки данного объема или данной части поверхности тела, называются распределенными.

    Понятие о сосредоточенной силе является условным, так как практически приложить силу к телу в одной точке нельзя. Силы, которые в механике рассматривают как сосредоточенные, представляют собой по существу равнодействующие некоторых систем распределенных сил.

    В частности, рассматриваемая в механике сила тяжести, действующая на данное твердое тело, представляет собой равнодействующую сил тяжести, действующих на его частицы. Линия действия этой равнодействующей проходит через точку, называемую центром тяжести тела.

    Абсолютно твёрдое тело (твёрдое тело) – тело, расстояние между частями которого не изменяется при действии на него сил, т.е. форма и размеры твёрдого тела не меняются при действии на его любых сил. Конечно таких тел в природе не существует. Это физическая модель. В тех случаях, когда деформации алы, можно реальные тела рассматривать как абсолютно твёрдые. Движение твердого тела в общем случае очень сложно. Мы рассмотрим только два вида движения тела:

    1. Поступательное движение:

    Движение тела считается поступательным , если любой отрезок прямой линии, жестко связанный с телом, всё время перемещается параллельно самому себе. При поступательном движении все точки тела совершают одинаковые перемещения, проходят одинаковые пути, имеют равные скорости и ускорения, описывают одинаковые траектории.

    2. Вращательное движение:

    Вращение твёрдого тела вокруг неподвижной оси – движение, при котором все точки тела описывают окружности, центры которых находятся на одной прямой, перпендикулярной плоскостям этих окружностей. Сама эта прямая является осью вращения.

    При вращении тела радикс окружности, описываемой точкой этого тела, повернётся за интервал времени на некоторый угол. Вследствие неизменности взаимного расположения точек тела на такой же угол повернутся за тоже время радиусы окружностей, описываемых любыми другими точками тела. à Этот угол является величиной, характеризующей вращательное движение всего тела в целом. Отсюда можно сделать вывод, что для описания вращательного движения абсолютно твердого тела вокруг неподвижной оси надо знать только одну переменную – угол, на который повернется тело за определенное время.

    Связь между линейной и угловой скоростями для каждой точки твердого тела даётся формулой V = ώ R

    Также точки твердо тела имеют нормальные и тангенциальные ускорения, которые можно задать формулами:

    а n = ώ 2 R a τ = βR

    3. Плоскопараллельное движение:

    Плоскопараллельное движение – движение, при котором каждая точка тела движется постоянно в одной плоскости, при этом все плоскости параллельны между собой.

    Теперь давайте разберёмся, что такое мгновенный центр вращения. Предположим, что колесо катится по какой-нибудь плоскости. движение этого колеса можно рассматривать как последовательность бесконечно малых поворотов вокруг точек. Отсюда можно сделать вывод, что в каждый момент колесо вращается вокруг своей нижней точки. Эта точка и называется мгновенным центром вращения .

    Мгновенная ось вращения – линия соприкосновения диска с плоскостью в данный момент времени.

    Статикой называется раздел механики, в котором излагается общее учение о силах и изучаются условия равновесия материальных тел, находящихся под действием сил.

    Под равновесием будем понимать состояние покоя тела по отношению к другим телам, например по отношению к Земле. Условия равновесия тела существенно зависят от того, является ли это тело твердым, жидким или газообразным. Равновесие жидких и газообразных тел изучается в курсах гидростатики или аэростатики. В общем курсе механики рассматриваются обычно только задачи о равновесии твердых тел.

    Все встречающиеся в природе твердые тела под влиянием внешних воздействий в той или иной мере изменяют свою форму (деформируются). Величины этих деформаций зависят от материала тел, их геометрической формы и размеров и от действующих нагрузок. Для обеспечения прочности различных инженерных сооружений и конструкций материал и размеры их частей подбирают так, чтобы деформации при действующих нагрузках были достаточно малы. Вследствие этого при изучении условий равновесия вполне допустимо пренебрегать малыми деформациями соответствующих твердых тел и рассматривать их как недеформируемые или абсолютно твердые. Абсолютно твердым телом называют такое тело, расстояние между каждыми двумя точками которого всегда остается постоянным. В дальнейшем при решении задач статики все тела рассматриваются как абсолютно твердые, хотя часто для краткости их называют просто твердыми телами.

    Состояние равновесия или движения данного тела зависит от характера его механических Взаимодействий с другими телами, т. е. от тех давлений, притяжений или отталкиваний, которые тело испытывает в результате этих взаимодействий. Величина, являющаяся основной мерой механического взаимодействия материальных тел, называется в механике силой.

    Рассматриваемые в механике величины можно разделить на скалярные, т. е. такие, которые полностью характеризуются их числовым значением, и векторные, т. е. такие, которые помимо числового значения характеризуются еще и направлением в пространстве.

    Сила - величина векторная. Ее действие на тело определяется: 1) числовым значением или модулем силы, 2) направлением силы, 3) точкой приложения силы.

    Модуль силы находят путем ее сравнения с силой, принятой за единицу. Основной единицей измерения силы в Международной системе единиц (СИ), которой мы будем пользоваться (подробнее см. § 75), является 1 ньютон (1 Н); применяется и более крупная единица 1 килоньютон . Для статического измерения силы служат известные из физики приборы, называемые динамометрами.

    Силу, как и все другие векторные величины, будем обозначать буквой с чертой над нею (например, F), а модуль силы - символом или той же буквой, но без черты над нею (F). Графически сила, как и другие векторы, изображается направленным отрезком (рис. 1). Длина этого отрезка выражает в выбранном масштабе модуль силы, направление отрезка соответствует направлению силы, точка А на рис. 1 является точкой приложения силы (силу можно изобразить и так, что точкой приложения будет конец силы, как?? на рис. А, в). Прямая DE, вдоль которой направлена сила, называется линией действия силы. Условимся еще о следующих определениях.

    1. Системой сил будем называть совокупность сил, действующих на рассматриваемое тело (или тела). Если линии действия всех сил лежат в одной плоскости, система сил называется плоской, а если эти линии действия не лежат в одной плоскости, - пространственной. Кроме того, силы, линии действия которых пересекаются в одной точке, называются сходящимися, а силы, линии действия которых параллельны друг другу, - параллельными.

    2. Тело, которому из данного положения можно сообщить любое перемещение в пространстве, называется свободным.

    3. Если одну систему сил, действующих на свободное твердое тело, можно заменить другой системой, не изменяя при этом состояния покоя или движения, в котором находится тело, то такие две системы сил называются эквивалентными.

    4. Система сил, под действием которой свободное твердое тело может находиться в покое, называется уравновешенной или эквивалентной нулю.

    5. Если данная система сил эквивалентна одной силе, то эта сила называется равнодействующей данной системы сил.

    Сила, равная равнодействующей по модулю, прямо противоположная ей по направлению и действующая вдоль той же прямой, называется уравновешивающей силой.

    6. Силы, действующие на данное тело (или систему тел), можно разделить на внешние и внутренние. Внешними называются силы, которые действуют на это тело (или на тела системы) со стороны других тел, а внутренними - силы, с которыми части данного тела (или тела данной системы) действуют друг на друга.

    7. Сила, приложенная к телу в какой-нибудь одной его точке, называется сосредоточенной. Силы, действующие на все точки данного объема или данной части поверхности тела, называются распределенными.

    Понятие о сосредоточенной силе является условным, так как практически приложить силу к телу в одной точке нельзя. Силы, которые в механике рассматривают как сосредоточенные, представляют собой по существу равнодействующие некоторых систем распределенных сил.

    В частности, рассматриваемая в механике сила тяжести, действующая на данное твердое тело, представляет собой равнодействующую сил тяжести, действующих на его частицы. Линия действия этой равнодействующей проходит через точку, называемую центром тяжести тела.

    Задачами статики являются: 1) преобразование систем сил, действующих на твердое тело, в системы им эквивалентные, в частности приведение данной системы сил к простейшему виду; 2) определение условий равновесия систем сил, действующих на твердое тело.

    Решать задачи статики можно или путем соответствующих геометрических построений (геометрический и графический методы), или с помощью численных расчетов (аналитический метод). В курсе будет главным образом применяться аналитический метод, однако следует иметь в виду, что наглядные геометрические построения играют при решении задач механики чрезвычайно важную роль.

    Законы Ньютона.

    Первый закон Ньютона. Инерциальные системы отсчета

    К выводу о существовании явления инерции впервые пришел Галилей, а затем Ньютон. Этот вывод формулируется в виде первого закона Ньютона (закона инерции ): существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на ней внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

    Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция - это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения, на тело необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность - это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.

    Второй закон Ньютона.

    Формула (1) выражает второй закон Ньютона , который формулируют так: сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этому телу силой.

    Силой называют векторную величину, характеризующую такое действие на данное тело других тел (или полей), которое может вызвать ускорение и деформацию тела (здесь мы имеем в виду произвольное твердое тело, а не материальную точку).

    Третий закон Ньютона.

    Во всех случаях, когда какое-либо тело действует на другое, имеет место не одностороннее действие, а взаимодействие тел. Силы такого взаимодействия между телами имеют одинаковую природу, появляются и исчезают одновременно. При взаимодействии двух тел оба тела получают ускорения, направленные по одной прямой в противоположные стороны. Так как a1/a2=m2/m1, то m1a1=m2a2, или в векторном виде

    m1а1=-m2a2. (1)

    Согласно второму закону Ньютона, m1а1=F1 и m2а2=F2. Тогда из формулы (2.7) следует, что

    Равенство (2) выражает третий закон Ньютона : тела взаимодействуют друг с другом силами, равными по модулю и противоположными по направлению.

    Абсолютно твердое тело. Момент инерции. Момент сил.

    Абсолютно твердое тело.

    Абсолю́тно твёрдое те́ло - второй опорный объект механики наряду с материальной точкой. Механика абсолютно твердого тела полностью сводима к механике материальных точек (с наложенными связями), но имеет собственное содержание (полезные понятия и соотношения, которые могут быть сформулированы в рамках модели абсолютно твердого тела), представляющее большой теоретический и практический интерес.

    Существует несколько определений:

    Абсолютно твёрдое тело - механическая система, обладающая только поступательными и вращательными степенями свободы. «Твёрдость» означает, что тело не может быть деформировано, то есть телу нельзя передать никакой другой энергии, кроме кинетической энергии поступательного или вращательного движения.

    Абсолютно твёрдое тело - тело (система), взаимное положение любых точек которого не изменяется, в каких бы процессах оно ни участвовало.

    Таким образом, положение абсолютно твердого тела полностью определяется, например, положением жестко привязанной к нему декартовой системы координат (обычно ее начало координат делают совпадающим с центром масс твердого тела).

    Абсолютно твёрдых тел в природе не существует, однако в очень многих случаях, когда деформация тела мала и ей можно пренебречь, реальное тело может (приближенно) рассматриваться как абсолютно твёрдое тело без ущерба для задачи.

    Момент инерции.

    Момент инерции - скалярная физическая величина, мера инертности тела во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

    Единица измерения СИ: кг·м².

    Обозначение: I или J.

    I=(знак сумм)mh^2 или I=(интеграл)ph^2dV,

    где mi - массы точек тела, hi - их расстояния от оси z, r - массовая плотность, V - объём тела. Величина Iz является мерой инертности тела при его вращении вокруг оси/

    Различают несколько моментов инерции - в зависимости от многообразия, от которого отсчитывается расстояние точек.

    МОМЕНТ СИЛ?? У КОГО ЕСТЬ В ЛЕКЦИЯХ СТАРЫХ?