• Что можно приготовить из кальмаров: быстро и вкусно

    Холодильные машины и установки предназначены для искусственного снижения и поддержания пониженной температуры ниже температуры окружающей среды от 10 °С и до -153 °С в заданном охлаждаемом объекте. Машины и установки для создания более низких температур называются криогенными. Отвод и перенос теплоты осуществляется за счет потребляемой при этом энергии. Холодильная установка выполняется по проекту в зависимости от проектного задания, определяющего охлаждаемый объект, необходимого интервала температур охлаждения, источников энергии и видов охлаждающей среды (жидкая или газообразная).


    Холодильная установка может состоять из одной или нескольких холодильных машин, укомплектованных вспомогательным оборудованием: системой энерго- и водоснабжения, контрольно-измерительными приборами, приборами регулирования и управления, а также системой теплообмена с охлаждаемым объектом. Холодильная установка может быть установлена в помещении, на открытом воздухе, на транспорте и в разных устройствах, в которых надо поддерживать заданную пониженную температуру и удалять излишнюю влагу воздуха.


    Система теплообмена с охлаждаемым объектом может быть с непосредственным охлаждением холодильным агентом, по замкнутой системе, по разомкнутой, как при охлаждении сухим льдом, или воздухом в воздушной холодильной машине. Замкнутая система может также быть с промежуточным хладагентом, который переносит холод от холодильной установки к охлаждаемому объекту.


    Началом развития холодильного машиностроения в широких размерах можно считать создание Карлом Линде в 1874 году первой аммиачной паро-компрессорной холодильной машины. С тех пор появилось много разновидностей холодильных машин, которые можно сгруппировать по принципу работы следующим образом: паро-компрессионнные, упрощенно называемые компрессорные, обычно с электроприводом; теплоиспользующие холодильные машины: абсорбционные холодильные машины и пароэжекторные; воздушно-расширительные, которые при температуре ниже -90 °С экономичнее компрессорных, и термоэлектрические, которые встраиваются в приборы.


    Каждая разновидность холодильных установок и машин имеет свои особенности, по которым выбирается их область применения. В настоящее время холодильные машины и установки применяются во многих областях народного хозяйства и в быту.

    2. Термодинамические циклы холодильных установок

    Перенос теплоты от менее нагретого к более нагретому источнику становится возможным в случае организации какого-либо компенсирующего процесса. В связи с этим циклы холодильных установок всегда реализуются в результате затрат энергии.


    Чтобы отводимая от «холодного» источника теплота могла быть отдана «горячему» источнику (обычно - окружающему воздуху), необходимо поднять температуру рабочего тела выше температуры окружающей среды. Это достигается быстрым (адиабатным) сжатием рабочего тела с затратой работы или подводом к нему теплоты извне.


    В обратных циклах количество отводимой от рабочего тела теплоты всегда больше количества подводимой теплоты, а суммарная работа сжатия больше суммарной работы расширения. Благодаря этому установки, работающие по подобным циклам, являются потребителями энергии. Такие идеальные термодинамические циклы холодильных установок уже рассмотрены выше в пункте 10 темы 3. Холодильные установки различаются применяемым рабочим телом и принципом действия. Передача теплоты от «холодного» источника «горячему» может осуществляться за счет затраты работы или же затрат теплоты.

    2.1. Воздушные холодильные установки

    В воздушных холодильных установках в качестве рабочего тела используется воздух, а передача теплоты от «холодного» источника «горячему» осуществляется за счет затраты механической энергии. Необходимое для охлаждения холодильной камеры понижение температуры воздуха достигается в этих установках в результате быстрого его расширения, при котором время на теплообмен ограничено, и работа в основном совершается за счет внутренней энергии, в связи, с чем температура рабочего тела падает. Схема воздушной холодильной установки показана на рис 7.14



    Рис. 14. : ХК - холодильная камера; К - компрессор; ТО - теплообменник; Д - расширительный цилиндр (детандер)


    Температура воздуха, поступающего из холодильной камеры ХК в цилиндр компрессора К, поднимается в результате адиабатного сжатия (процесс 1 - 2) выше температуры Т3 окружающей среды. При протекании воздуха по трубкам теплообменника ТО его температура при неизменном давлении понижается - теоретически до температуры окружающей среды Тз. При этом воздух отдает в окружающую среду теплоту q (Дж/кг). В результате удельный объем воздуха достигает минимального значения v3, и воздух перетекает в цилиндр расширительного цилиндра - детандера Д. В детандере, вследствие адиабатного расширения (процесс 3-4) с совершением полезной работы, эквивалентной затемненной площади 3-5-6-4-3, температура воздуха опускается ниже температуры охлаждаемых в холодильной камере предметов. Охлажденный подобным образом воздух поступает в холодильную камеру. В результате теплообмена с охлаждаемыми предметами температура воздуха при постоянном давлении (изобара 4-1) повышается до своего исходного значения (точка 1). При этом от охлаждаемых предметов к воздуху подводится теплота q2 (Дж/кг). Величина q 2, называемая хладопроизводительностью, представляет собой количество теплоты, получаемой 1 кг рабочего тела от охлаждаемых предметов.

    2.2. Парокомпрессорные холодильные установки

    В парокомпрессорных холодильных установках (ПКХУ) в качестве рабочего тела применяют легкокипящие жидкости (табл. 1), что позволяет реализовать процессы подвода и отвода теплоты по изотермам. Для этого используются процессы кипения и конденсации рабочего тела (хладагента) при постоянных значениях давлений.


    Таблица 1.



    В XX веке в качестве хладагентов широко применяли различные фреоны на основе фторхлоруглеродов. Они вызывали активное разрушение озонового слоя, в связи, с чем в настоящее время их применение ограничено, и в качестве основного хладагента используют хладагент К- 134А (открыт в 1992 году) на основе этана. Его термодинамические свойства близки к свойствам фреона К-12. У обоих хладагентов несущественно различаются молекулярные массы, теплоты парообразования и температуры кипения, но, в отличие от К-12, хладагент К-134А не агрессивен по отношению к озоновому слою Земли.


    Схема ПКХУ и цикл в T-s-координатах показаны на рис. 15 и 16. В ПКХУ понижение давления и температуры осуществляется дросселированием хладагента при его протекании через редукционный вентиль РВ, проходное сечение которого может изменяться.


    Хладагент из холодильной камеры ХК поступает в компрессор К, в котором адиабатно сжимается в процессе 1 -2. Образующийся при этом сухой насыщенный пар поступает в КД, где конденсируется при постоянных значениях давления и температуры в процессе 2-3. Выделяющаяся теплота q1 отводится к «горячему» источнику, которым в большинстве случаев является окружающий воздух. Образовавшийся конденсат дросселируется в редукционном вентиле РВ с переменным проходным сечением, что позволяет изменять давление выходящего из него влажного пара (процесс 3-4).





    Рис. 15. Принципиальная схема (а) и цикл в T-s-координатах (б) парокомпрессорной холодильной установки : КД - конденсатор; К - компрессор; ХК - холодильная камера; РВ - редукционный вентиль


    Поскольку протекающий при неизменном значении энтальпии (h3 - h) процесс дросселирования необратим, его изображают пунктирной линией. Полученный в результате процесса влажный насыщенный пар небольшой степени сухости попадает в теплообменник холодильной камеры, где при постоянных значениях давления и температуры испаряется за счет теплоты q2b отбираемой от находящихся в камере предметов (процесс 4-1).




    Рис. 16. : 1 - холодильная камера; 2 - теплоизоляция; 3 - компрессор; 4 - сжатый горячий пар; 5 - теплообменник; 6 - охлаждающий воздух или охлаждающая вода; 7 - жидкий хладагент; 8 - дроссельный вентиль (расширитель); 9 - расширившаяся, охлажденная и частично испарившаяся жидкость; 10 - охладитель (испаритель); 11 - испарившийся теплоноситель


    В результате «подсушивания» степень сухости хладагента растет. Количество теплоты, отбираемой у охлаждаемых в холодильной камере предметов, в Т-Б-координатах определяется площадью прямоугольника под изотермой 4-1.


    Использование в ПКХУ легкокипящих жидкостей в качестве рабочего тела позволяет приблизиться к обратному циклу Карно.


    Вместо дросселирующего вентиля для понижения температуры можно использовать и расширительный цилиндр - детандер (см. рис. 14). При этом установка будет работать по обратному циклу Карно (12-3-5-1). Тогда теплота, отбираемая у охлаждаемых предметов, будет большей - она определится площадью под изотермой 5-4-1. Несмотря на частичную компенсацию затрат энергии на привод компрессора положительной работой, получаемой при расширении хладагента в расширительном цилиндре, такие установки не применяют ввиду их конструктивной сложности и больших габаритных размеров. К тому же в установках с дросселем переменного сечения гораздо проще регулировать температуру в холодильной камере.




    Рис 17.


    Для этого достаточно лишь изменить площадь проходного сечения дросселирующего вентиля, что приводит к изменению давления и соответствующей ему температуры насыщенных паров хладагента на выходе из вентиля.


    В настоящее время вместо поршневых компрессоров в основном используют лопаточные компрессоры (рис. 18). О большей экономичности ПКХУ по сравнению с воздушными установками свидетельствует и тот факт, что отношение холодильных коэффициентов ПКХУ и обратного цикла Карно

    В реальных парокомпрессорных установках из теплообменника- испарителя холодильной камеры в компрессор поступает не влажный, а сухой или даже перегретый пар (рис. 17). Это увеличивает отводимую теплоту q2, уменьшает интенсивность теплообмена хладагента со стенками цилиндра и улучшает условия смазывания поршневой группы компрессора. В подобном цикле в конденсаторе происходит некоторое переохлаждение рабочего тела (участок изобары 4-5).





    Рис. 18.

    2.3. Пароэжекторные холодильные установки

    Цикл пароэжекторной холодильной установки (рис. 19 и 20) также осуществляют за счет затраты тепловой, а не механической энергии.




    Рис. 19. : ХК - холодильная камера; Э - эжектор; КД - конденсатор; РВ - редукционный вентиль; Н - насос; КА - котельный агрегат





    Рис. 20.


    При этом компенсирующим является самопроизвольный перенос теплоты от более нагретого тела к менее нагретому телу. В качестве рабочего тела может использоваться пар любой жидкости. Однако обычно используют самый дешевый и доступный хладагент - водяной пар при низких значениях давления и температуры.


    Из котельной установки пар поступает в сопло эжектора Э. При истечении пара с большой скоростью в камере смешения за соплом создается разрежение, под действием которого в камеру смешения подсасывается хладагент из холодильной камеры ХК. В диффузоре эжектора скорость смеси уменьшается, а давление и температура растут. Затем паровая смесь поступает в конденсатор КД, где превращается в жидкость в результате отведения в окружающую среду теплоты q1. В связи с многократным уменьшением удельного объема в процессе конденсации давление понижается до значения, при котором температура насыщения приблизительно равна 20 °С. Одна часть конденсата перекачивается насосом Н в котельный агрегат КА, а другая - подвергается дросселированию в вентиле РВ, в результате чего при понижении давления и температуры образуется влажный пар с небольшой степенью сухости. В теплообменнике-испарителе ХК этот пар подсушивается при постоянной температуре, отбирая теплоту q2 у охлаждаемых предметов, а затем вновь поступает в паровой эжектор.


    Поскольку затраты механической энергии на перекачивание жидкой фазы в абсорбционных и пароэжекторных холодильных установках крайне малы, ими пренебрегают, и эффективность таких установок оценивают коэффициентом теплоиспользования, представляющим собой отношение отбираемой от охлаждаемых предметов теплоты к теплоте, используемой для реализации циклов.


    Для получения низких температур в результате переноса теплоты к «горячему» источнику принципиально могут использовать и иные принципы. Например, температуру можно понижать в результате испарения воды. Этот принцип применяют в условиях жаркого и сухого климата в испарительных кондиционерах.

    3. Бытовые и промышленные холодильники

    Холодильник - устройство, поддерживающее низкую температуру в теплоизолированной камере. Обычно их применяют для хранения пищи и других предметов, требующих хранения в холодном месте.


    На рис. 21 показана схема работы однокамерного холодильника, а на рис. 22 - назначение основных частей холодильника.





    Рис. 21.




    Рис. 22.


    Работа холодильника основана на применении теплового насоса, переносящего теплоту из рабочей камеры холодильника наружу, где оно отдается внешней среде. В промышленных холодильниках объём рабочей камеры может достигать десятков и сотен м3.


    Холодильники могут быть двух видов: среднетемпературные камеры для хранения продуктов и низкотемпературные морозильники. Однако в последнее время наибольшее распространение получили двухкамерные холодильники, включающие в себя оба компонента.


    Холодильники бывают четырех типов: 1 - компрессионные; 2 - абсорбционные; 3 - термоэлектрические; 4 - с вихревыми охладителями.



    Рис. 23. : 1 - конденсатор; 2 - капилляр; 3 - испаритель; 4 - компрессор



    Рис. 24.


    Основными составляющими частями холодильника являются:


    1 - компрессор, получающий энергию от электрической сети;


    2 - конденсатор, находящийся снаружи холодильника;


    3 - испаритель, находящийся внутри холодильника;


    4 - терморегулирующий расширительный вентиль (ТРВ), являющийся дросселирующим устройством;


    5 - хладагент (циркулирующее в системе вещество с определёнными физическими характеристиками - обычно им является фреон).

    3.1. Принцип работы компрессионного холодильника

    Теоретической основой, на которой построен принцип работы холодильников, схема которых показана на рис. 23, является второе начало термодинамики. Охлаждающий газ в холодильниках совершает так называемый обратный цикл Карно . При этом основная передача теплоты основана не на цикле Карно, а на фазовых переходах - испарении и конденсации. В принципе возможно создание холодильника использующего только цикл Карно, но при этом для достижения высокой производительности потребуется или компрессор, создающий очень высокое давление, или очень большая площадь охлаждающего и нагревающего теплообменника.


    Хладагент поступает в испаритель под давлением через дросселирующее отверстие (капилляр или ТРВ), где за счёт резкого уменьшения давления происходит испарение жидкости и превращение ее в пар. При этом хладагент отнимает теплоту у внутренних стенок испарителя, за счёт чего происходит охлаждение внутреннего пространства холодильника. Компрессор засасывает из испарителя хладагент в виде пара, сжимает его, за счёт чего температура хладагента повышается и выталкивает в конденсатор. В конденсаторе нагретый в результате сжатия хладагент остывает, отдавая теплоту во внешнюю среду, и конденсируется , т.е. превращается в жидкость. Процесс повторяется вновь. Таким образом, в конденсаторе хладагент (обычно им является фреон) под воздействием высокого давления конденсируется и переходит в жидкое состояние, выделяя теплоту, а в испарителе под воздействием низкого давления хладагент вскипает и переходит в газообразное, поглощая теплоту.


    Терморегулирующий вентиль (ТРВ) необходим для создания необходимой разности давлений между конденсатором и испарителем, при которой происходит цикл теплопередачи. Он позволяет правильно (наиболее полно) заполнять внутренний объем испарителя вскипевшим хладагентом. Пропускное сечение ТРВ изменяется по мере снижения тепловой нагрузки на испаритель, причем при понижении температуры в камере количество циркулирующего хладагента уменьшается. Капилляр - это аналог ТРВ. Он не меняет свое сечение, а дросселирует определенное количество хладагента, зависящее от давления на входе и выходе капилляра, его диаметра и типа хладагента.


    При достижении необходимой температуры температурный датчик размыкает электрическую цепь и компрессор останавливается. При повышении температуры (за счёт внешних факторов) датчик вновь включает компрессор.

    3.2. Принцип работы абсорбционного холодильника

    В абсорбционном водо-аммиачном холодильнике используется свойство одного из широко распространённых хладагентов - аммиака - хорошо растворяться в воде (до 1000 объёмов аммиака на 1 объём воды). Принцип работы абсорбционной холодильной установки показан на рис. 26, а ее принципиальная схема - на рис. 27.



    Рис. 26.



    Рис. 27. : ГП - генератор пара; КД - конденсатор; РВ1, РВ2 - редукционные вентили; ХК - холодильная камера; Аб - абсорбер; Н - насос


    В этом случае требуемое для любого испарительного холодильника удаление газообразного хладагента из змеевика испарителя ведут поглощением его водой, раствор аммиака в которой затем перекачивают в специальную ёмкость (десорбер/генератор) и там подвергают разложению на аммиак и воду путём нагрева. Пары аммиака и воды из неё под давлением поступают в устройство разделения (ректификационная колонна), где пары аммиака отделяются от воды. Далее практически чистый аммиак попадает в конденсатор, где, охлаждаясь, конденсируется и через дроссель снова поступает в испаритель для испарения. Такая тепловая машина может использовать для перекачки раствора хладагента разнообразные приспособления, в том числе и струйные насосы, и не иметь движущихся механических частей. Помимо аммиака и воды, могут использоваться и другие пары веществ - например, раствор бромистого лития, ацетилен и ацетон. Преимущества абсорбционных холодильников - бесшумность работы, отсутствие движущихся механических частей, возможность работы от нагрева прямым сжиганием топлива, недостаток - низкая холодопроизводительность на единицу объёма.

    3.3. Принцип работы термоэлектрического холодильника

    Существуют устройства, основанные на эффекте Пельтье, заключающемся в поглощении теплоты одним из спаев термопар (разнородных проводников) при выделении ее на другом спае в случае пропускания через них тока. Этот принцип используют, в частности, в сумках-кулерах. Возможно как понижение, так и повышение температуры с помощью предложенных французским инженером Ранком вихревых трубок, в которых температура существенно изменяется по радиусу движущегося в них закрученного вихревого воздушного потока.


    Термоэлектрический холодильник основан на элементах Пельтье. Он бесшумен, но распространен мало из-за дороговизны охлаждающих термоэлектрических элементов. Однако небольшие автомобильные холодильники и охладители питьевой воды часто производят с охлаждением от элементов Пельтье.

    3.4. Принцип работы холодильника на вихревых охладителях

    Охлаждение осуществляется за счёт расширения предварительно сжатого компрессором воздуха в блоках специальных вихревых охладителей. Они распространены мало из-за большой шумности, необходимости подвода сжатого (до 1,0-2,0 МПа) воздуха и очень большого его расхода, низкого КПД. Достоинства - большая безопасность (не используется электричество, нет движущихся частей и опасных химических соединений), долговечность и надёжность.

    4. Примеры холодильных установок

    Некоторые схемы и описания холодильных установок различного назначения, а также их фотографии показаны на рис. 27-34.



    Рис. 27.





    Рис. 28.





    Рис. 29.



    Рис 32.



    Рис. 33.


    Например, холодильные установки компрессорно-конденсаторные (тип АКК) или компрессорно-рессиверные (тип АКР), показанные на рис. 34, предназначены для работы c поддержанием температуры от +15 °С до -40 °С в камерах объёмом от 12 до 2500 м3.


    В состав холодильной установки входят: 1 - компрессорно-конденсаторный или компрессорно -рессиверный агрегат; 2 - воздухоохладитель; 3 - терморегулирующий вентиль (ТРВ); 4 - соленоидный вентиль; 5 - щит управления.





    Машинный способ является наиболее распространенным способом получения холода за счет изменения агрегатного состояния рабочего вещества, кипения его при низких температурах, с отводом от охлаждаемого тела или среды необходимой для этого теплоты парообразования.

    Одним из условий эффективной работы торгового холодильного оборудования является применение в качестве рабочих веществ холодильных агентов, обладающих хорошими термодинамическими, теплофизическими, физико-химическими, физиологическими и озонобезопасными свойствами. Важное значение имеют также их стоимость и доступность. Холодильные агенты не должны быть ядовиты, вызывать удушья и раздражения слизистых оболочек глаз, носа и дыхательных путей человека.

    Различают естественные и искусственные холодильные агенты. К естественным хладагентам относятся: аммиак (R717), воздух (R729), вода (R718), углекислота (R744) и др., к искусственным - хладоны (смеси различных фреонов).

    В настоящее время существует три типа фторуглеводородных хладагентов:

    хлорфторуглероды (CFC), обладающие высоким потенциалом истощения озона. Например: R12, R13, R502, R503;

    гидрохлорфторуглероды (HCFC), которые содержат атомы водорода, что приводит к более короткому периоду существования этих хладагентов в атмосфере по сравнению с CFC, например хладагент R22;

    гидрофторуглероды (HFC), которые не содержат хлора. Они не разрушают озоновый слой Земли и имеют короткий период существования в атмосфере. Например: R134A, R404A.

    В связи с этим проблема использования в качестве хладагентов природных веществ, и в первую очередь аммиака, наиболее актуальна сейчас у производителей холодильного оборудования. В России потребность в холоде для стационарных холодильников в основном обеспечивается аммиачными холодильными установками, так как аммиак не разрушает озоновый слой, не оказывает прямого воздействия на глобальный тепловой эффект, обладает отличными термодинамическими свойствами, имеет высокий коэффициент теплоотдачи при кипении и конденсации и доступность производства.

    К негативным свойствам аммиака относятся токсичность, пожаро- и взрывоопасность, резкий неприятный запах. Любая авария с аммиаком ведет к серьезным последствиям.

    В торговле в основном используют компрессионные холодильные машины, которые состоят из следующих основных узлов: компрессора, конденсатора воздушного охлаждения, терморегулирующего вентиля (ТРВ) и испарителя. Холодильная машина, кроме перечисленных основных частей, имеет приборы автоматики, фильтры, осушители, теплообменники и т.п.

    Компрессор - наиболее сложный и важный узел холодильной машины. Он служит для отсасывания паров хладагента из испарителя, сжатия и нагнетания в конденсатор. Основным показателем работы компрессора является его холодопроизводительность (количество теплоты, которое холодильная машина получает за единицу времени от охлаждаемой среды).

    Конденсатор воздушного охлаждения - теплообменный аппарат, в котором поступающий из компрессора парообразный хладагент превращается в жидкость. Этот процесс протекает при отдаче хладагентом теплоты во внешнюю среду.

    Испаритель - теплообменный аппарат, осуществляющий отбор тепла от охлаждаемой среды.

    Терморегулирующий вентиль служит для автоматической подачи необходимого количества хладагента в испаритель. Он контролирует и поддерживает заданную температуру паров хладона на выходе из испарителя.

    Приборы автоматики обеспечивают пуск, остановку холодильной машины, защиту ее от перегрузок, поддержание заданного температурного режима в охлаждаемой среде, оптимальное заполнение испарителя хладагентов, своевременное оттаивание снеговой шубы с испарителей.

    Реле давления автоматически поддерживает заданное давление на линии всасывания путем включения и выключения компрессора.

    Ресивер - резервуар, который собирает жидкий хладагент в целях обеспечения его равномерного поступления к ТРВ и в испаритель. Фильтр служит для удаления механических загрязнений. Осушитель предназначен для поглощения влаги из хладагента при заполнении им системы и во время эксплуатации машины. Теплообменник служит для перегрева паров хладагента, идущих от испарителя к компрессору, и переохлаждения хладагента, идущего от конденсатора к ТРВ.

    Принцип действия холодильной машины заключается в следующем.

    1. В испарителе, установленном в охлаждающем объеме, происходит кипение жидкого хладагента при низком давлении и температуре за счет отбора тепла из окружающей среды.

    2. Из испарителя пары хладона проходят через теплообменник и паровой фильтр, затем они отсасываются компрессором, сжимаются и в перегретом состоянии нагнетаются в конденсатор, при этом температура и давление повышаются.

    3. В охлаждаемом воздухом конденсаторе они конденсируются, т.е. превращаются в жидкость.

    4. Жидкий хладон стекает по трубам конденсатора и скапливается в ресивере, откуда под давлением проходит через жидкостный фильтр и теплообменник.

    5. Очищенный хладон, проходя через узкое отверстие ТРВ, дросселируется, распыляется и при резком снижении температуры и давления поступает в испаритель.

    Цикл повторяется. Циркулируя по такому замкнутому кругу, хладагент попеременно меняет свое агрегатное состояние, т. е. происходит скачкообразный переход хладагента из жидкого состояния в газообразное и наоборот.

    В настоящее время в торговом холодильном оборудовании используются различные системы холодоснабжения: встроенные, выносные и централизованные.

    Теплопритоки в торговые залы магазинов от встроенных в оборудование холодильных агрегатов приводят к снижению товарооборота и росту непредусмотренных расходов, в том числе:

    создаются некомфортные для покупателей условия (высокая температура воздуха в торговом зале и высокий уровень шума, неприятные посторонние запахи);

    некомфортные для продавцов и обслуживающего персонала условия приводят к снижению качества обслуживания, падает имидж предприятия и уменьшается товарооборот;

    срок службы встроенных холодильных агрегатов в 2...3 раза ниже, чем при использовании систем выносного холодоснабжения, и в 4...6 раз ниже, чем при использовании централей;

    происходят частые выходы из строя оборудования;

    возникают дополнительные расходы на кондиционирование и на энергопотребление.

    Выносное холодоснабжение представляет собой систему холодоснабжения на базе автономных компрессорно-конденсаторных агрегатов, расположенных в машинном отделении и изолированных от торговых помещений. При этом каждый агрегат может обеспечивать холодом нескольких потребителей.

    Одним из важнейших условий эффективного развития предприятий торговли является использование централизованных систем холодоснабжения, представляющих собой несколько параллельно включенных компрессоров на единой раме с дополнительным оборудованием. Каждый центральный агрегат оборудован микропроцессорным блоком управления, осуществляющим регулирование холодопроизводительности агрегата и обеспечивающим равномерную работу каждого компрессора и конденсатора.

    Основные достоинства использования централизованной системы холодоснабжения следующие:

    центральные агрегаты компактны и занимают значительно меньше места;

    достигается заметная экономия электроэнергии, так как крупные компрессоры имеют более высокий коэффициент полезного действия;

    для крупных супермаркетов централизованная система холодоснабжения экономически выгоднее традиционного варианта холодоснабжения; увеличивается товарооборот;

    обеспечивается высокая надежность за счет использования нескольких компрессоров;

    в случае выхода из строя одного или несколько компрессоров остальные компрессоры обеспечат поддержание требуемой температуры для предотвращения потери продукции до устранения неисправности;

    Охлаждение подразделяется на естественное и искусственное. На первое энергия не тратится. Причем температура объекта стремится к температуре окружающего воздуха. Искусственное охлаждение представляет собой снижение температуры объекта до уровня ниже такого же показателя среды. Для такого охлаждения нужны холодильные машины или устройства. Обычно они применяются в промышленности для достижения нужных условий хранения, течения химических реакций, безопасности. Тепловые и холодильные машины очень широко применяются и в быту. Их принцип работы базируется на явлениях сублимации и конденсации.

    Охлаждение льдом

    Это самый доступный и простой вид охлаждения. Особенно удобен он в районах, где есть возможность накопления естественного льда.

    В качестве средства охлаждения лед используется в процессе заготовки и хранения рыбы, при краткосрочном хранении овощной продукции, транспортировке пищевых продуктов в охлажденном виде. Лед применяется в погребах и ледниках. В таком оборудовании очень важна теплоизоляция. В стационарных ледниках стены гидро- и теплоизолированы. Они рассчитаны на температурный диапазон +5...+8°С.

    Льдосоляное охлаждение

    Льдосоляной метод охлаждения позволяет достичь поддержки еще более низких температурных условий в объеме, подвергаемом охлаждению. Совместное использование льда и соли дает возможность снизить температуру, при которой лед тает. Таков принцип. Принцип холодильной машины.

    Для этой цели смешивается лед и хлористый натрий. В зависимости от концентрации соли температура льда колеблется от -1,8 до -21,2°С.

    До минимума температура плавления доходит, если соли в смеси 23%. В этом случае лед не тает при минимальном показателе.

    Сухой лед служит для поддержания низких температур в процессе хранения фруктов, мороженого, овощей, полуфабрикатов. Так называют твердое состояние углекислоты. При атмосферном давлении и нагреве она из твердой становится газообразной, пропуская фазу жидкости. Производительность холода у сухого льда вдвое больше, чем у водяного. Когда происходит сублимация сухого льда, получается углекислый газ, который, помимо всего прочего, выполняет консервирующие функции, способствуя сохраннности продуктов.

    Методы охлаждения с использованием льда имеют и ряд недостатков, ограничивающих их применение. В связи с этим главным методом генерации холода становится машинное охлаждение.

    Искусственное охлаждение

    Машинное охлаждение представляет собой производство холода, которое производят холодильные машины и установки. У этого способа есть несколько достоинств:

    • в автоматическом режиме сохраняется неизменный уровень температуры, различный для разных групп продуктов;
    • оптимально задействовано охлаждаемое пространство;
    • удобно эксплуатировать охлаждаемые помещения;
    • небольшие затраты на техобслуживание.

    Как работает

    Принцип работы холодильной машины таков. Безусловно, человеку, который только лишь пользуется холодильной машиной или разыскивает ее, совсем не обязательно глубоко и всесторонне разбираться в работе холодильных машин. При этом знание основополагающих принципов работы таких установок будет совсем не лишним. Эта информация способна оказать помощь в осознанном выборе оборудования и облегчит беседу с профессионалами при выборе холодильного оборудования.

    Также важно разбираться, как происходит работа холодильной машины. В ситуациях, когда холодильное оборудование отказывает и требуется вызов специалиста, имеет смысл вникнуть в принцип действия подобных машин. Ведь понимание объяснений специалиста о том, что нужна замена или ремонт какой-либо детали холодильной машины, позволит не потерять лишних денег.

    Главный принцип работы холодильной машины - отвод тепла от объекта, подвергаемого охлаждению, и его перенос к другому объекту. Важно понимание того, что нагревание или сжатие объекта сопровождается передачей ему энергии, а охлаждение и расширение отбирает энергию. На этом основана передача тепла.

    Для переноса тепла холодильные машины используют хладагенты - специальные вещества, отнимающие теплоту у объекта охлаждения в ходе кипения и расширения при постоянной температуре. В дальнейшем после сжатия энергия передается охлаждающей среде посредством конденсации.

    Назначение отдельных узлов

    Компрессором холодильной машины обеспечивается кругооборот хладагента в системе, его кипение в испарителе с нагнетанием в блок конденсатора.

    Он призван отсасывать хладагент фреон в газообразном состоянии из испарителей, и, сжимая, нагнетать в конденсатор, где он превращается в жидкость. Затем фреон в жидком состоянии накапливается в ресивере. Этот узел оборудован входными и выходными запорными вентилями. Дальнейший путь хладагента - из ресивера в фильтр-осушитель. Здесь остатки влаги и примеси удаляются и поступают в испаритель.

    В испарителе хладагент достигает кипения, что отбирает теплоту у охлаждаемого объекта. Далее хладагент уже в газообразном состоянии попадает из испарителя в компрессор, очищаясь через фильтр от загрязнений. Далее рабочий цикл агрегата повторяется, это и есть принцип. Принцип холодильной машины.

    Холодильный агрегат

    Объединение совокупности деталей и узлов холодильной машины на едином каркасе принято называть холодильным агрегатом. Совмещение узлов холодильной машины производителем делает удобнее монтаж, и происходит он быстрее.

    Холодопроизводительность таких агрегатов - параметр, представляющий собой количество тепла, отнимаемое у среды, подвергаемой охлаждению за один час. При различных режимах работы производительность холода варьируется в широком диапазоне. Когда растет температура конденсации и понижается градус испарения, производительность уменьшается.

    Хладагенты

    Холодильные машины, используемые в торговых организациях, в роли хладагентов используют хладон или фреон, а для заморозки в промышленных масштабах - аммиак.

    Хладон представляет собой тяжелый газ без цвета и со слабым запахом, ощутимым, лишь когда его концентрация в воздухе достигает 20%. Газ не горюч и не взрывчат. В хладоне хорошо растворимы смазочные масла. При больших температурах они составляют с ним однородную смесь. Хладон не влияет на вкусовые качества, аромат и цвет продуктов.

    В холодильных установках с хладоном не должно быть более 0,006% массы влаги. Иначе она замерзает в тонких трубках, препятствуя работе холодильной машины. Из-за высокой текучести газа нужна хорошая герметизация агрегатов.

    Аммиак - бесцветный резко пахнущий газ, опасный для человеческого организма. Его допустимое содержание в воздухе — 0,02 мг/л. Когда концентрация доходит до 16%, возможен взрыв. При содержании газа свыше 11% и открытом пламени рядом начинается горение.

    На сегодняшний день наш быт мы не можем представить без приборов, которые охлаждают продукты. Даже на производстве реализовать технологический процесс невозможно без холодильных машин. Так, получается, что холодильные установки необходимы нам повседневной жизни, включая производство и торговлю.

    Использовать естественное охлаждение не всегда можно, учитывая сезонность, и возможность снизить температуру максимум до температуры воздуха, а летом это и вовсе не реально. И здесь начинается наша необходимость в приобретении холодильника. основан на том, чтобы при помощи техники реализовать процесс испарения и выработать конденсат.

    Среди преимуществ холодильных установок можно выделить автоматическую работу поддержания постоянной низкой температуры, которая будет оптимальной для конкретной категории продуктов. Но это касается фактической пользы, а если брать во внимание и затраты на эксплуатацию, ремонт и техническое обслуживание, то холодильник и вовсе получается выгодной техникой.

    Принцип работы холодильной машины основан на охлаждении – физическом процессе, базирующимся на потреблении выделяемого машиной тепла в результате кипения жидкости. С каким показателем температуры жидкая среда доходит до кипения – будет зависеть от происхождения жидкости и уровня оказываемого давления.

    Высокий показатель давления – высокая температура кипения. Ровно в такой же зависимости работает этот процесс и обратно: ниже давление – меньше температура закипания и испарения жидкости.

    Химические свойства каждого вида жидкости качественно влияют на температуру, необходимую для закипания. Так, например, вода, закипает при 100 градусах, а жидкому азоту необходимо -174 градуса по Цельсию.

    Рассмотрим жидкий фреон. Этот хладагент является самым популярным веществом, которым насыщена вся система холодильного оборудования. Кстати, фреон в обычных условиях в открытой емкости может закипеть даже при нормальном показателе атмосферного давления. Причем, этот процесс начнется немедленно, как только фреон сконтактирует с воздухом.


    Данное явление непременно сопровождается поглощением окружающего тепла. Вы сможете наблюдать, как сосуд будет покрываться инеем, потому что происходит конденсация и замораживание водных паров воздуха. Это действие завершится только тогда, когда хладагент примет газообразное состояние, или не увеличится давление над фреоном, чтобы прекратить испарение и остановить превращение жидкого фреона в газообразный.

    Так можно описать принцип работы холодильной машины простыми словами . Аналогичный цикл выполняет жидкий фреон в системе холодильника. Разница заключается в том, что сосуд не открытый, а специальный – не имеющий доступа воздуху, именуемый узлом теплообменником, а если быть точнее – испарителем.

    Закипающий в испарителе хладагент переходит в активную фазу поглощения тепла, исходящего от шланг узла-теплообменника. А трубки, а точнее их материал, будут омываться жидкостью, а это напрямую связано с процессом охлаждения воздуха. Такой процесс не должен прерываться, он постоянный. Для его поддержания необходимо регулярное кипение фреона в испарителе, а значит – постоянное удаление газообразного хладагента и добавление его в жидком состоянии.

    Конденсация пара жидкого фреона требует температуру ровно такую, какой она будет в зависимости от атмосферного давления. Выше показатель давления – выше градус для конденсации. Давление в 23 атмосферы необходимо, что конденсировать пары фреона R22, в то время как температура будет равна +55 градусам.

    Пары хладагента во время превращения их в жидкость выделяют большое количество тепла в окружающую среду. Холодильник для такого процесса имеет специальный, абсолютно герметичный тепловой обменник, называемым конденсатором. Он предназначен для отвода выделенной тепловой энергии. Выглядит конденсатор как алюминиевый элемент, имеющий ребристую поверхность.


    Чтобы пары фреона вывести из испарителя, а давление создать такое, которое будет оптимально благоприятным для конденсации, необходимо специальное насосное устройство – компрессор. Кроме того, в холодильной установке не обойтись без работы регулятора потока фреона. Эта функция отведена дросселирующей капиллярной трубке. Каждый из элементов холодильной системы соединяется между собой трубопроводом, образуя последовательную цепочку – так круг системы замыкается.

    Принцип работы холодильной установки на фреоне

    Предполагает выполнение реального цикла, который существенно отличается от теоретического. Разница заключается в присутствии такого понятия, как потеря давления. Происходит это во время реального цикла на клапанах компрессора (подробнее о видах компрессора читайте здесь: ) и на его обвязке в частности. Такие потери в последствии необходимо компенсировать.

    Для этого следует добиться увеличения работы сжатия, что понизит результативность цикла. В суть этого параметра вложены соотношение мощности агрегата и мощности, необходимой для работы компрессора. А вот насколько эффективно работает установка – параметр сравнительный, который никак не отражается на производительности холодильника.

    Принцип работы холодильной установки на фреоне для сравнения: эффективность работы 3,5, то есть на 1 единицу электрической энергии для данной системы приходится 3,5 единицы холода, который она производит. Эффективность машины будет возрастать с ростом данного показателя.