• Что можно приготовить из кальмаров: быстро и вкусно

    ) для одиночного глубинного заземлителя на основе модульного заземления производится как расчет обычного вертикального заземлителя из металлического стержня диаметром 14,2 мм.

    Формула расчета сопротивления заземления одиночного вертикального заземлителя:


    где:
    ρ - удельное сопротивление грунта (Ом*м )
    L - длина заземлителя (м)
    d - диаметр заземлителя (м)
    T - заглубление заземлителя (расстояние от поверхности земли до середины заземлителя) (м)
    π - математическая константа Пи (3,141592)
    ln - натуральный логарифм

    Для электролитического заземления ZANDZ формула расчета сопротивления заземления упрощается до вида:

    - для комплекта ZZ-100-102

    Вклад соединительного заземляющего проводника здесь не учитывается.

    Расстояние между заземляющими электродами

    При многоэлектродной конфигурации заземлителя на итоговое сопротивление заземления начинает оказывать свое влияние еще один фактор - расстояние между заземляющими электродами. В формулах расчета заземления этот фактор описывается величиной "коэффициент использования ".

    Для модульного и электролитического заземления этим коэффициентом можно пренебречь (т.е. его величина равна 1) при соблюдении определенного расстояния между заземляющими электродами:

    • не менее глубины погружения электродов - для модульного
    • не менее 7 метров - для электролитического

    Соединение электродов в заземлитель

    Для соединения заземляющих электродов между собой и с объектом в качестве заземляющего проводника используется медная катанка или стальная полоса.

    Сечение проводника часто выбирается - 50 мм² для меди и 150 мм² для стали. Распространено использование обычной стальной полосы 5*30 мм.

    Для частного дома без молниеприемников достаточно медного провода сечением 16-25 мм² .

    Подробнее о прокладке заземляющего проводника можно ознакомиться на отдельной странице "Монтаж заземления ".

    Сервис расчета вероятности удара молнии в объект

    Если помимо заземляющего устройства Вам предстоит установить систему внешней молниезащиты, Вы можете воспользоваться уникальным сервисом расчета вероятности удара молнии в объект , защищённый молниеприёмниками. Сервис разработан командой ZANDZ совместно с ОАО «Энергетический институт им.Г.М.Кржижановского» (ОАО «ЭНИН»)

    Этот инструмент позволяет не просто проверить надежность системы молниезащиты, но и выполнить наиболее рациональный и правильный проект защиты от молнии, обеспечивая:

    • меньшую стоимость конструкции и монтажных работ, уменьшая ненужный запас и используя менее высокие, менее дорогие в монтаже, молниеприёмники;
    • меньшее количество ударов молнии в систему, сокращая вторичные негативные последствия, что особенно важно на объектах со множеством электронных приборов (количество ударов молнии уменьшается с уменьшением высоты стержневых молниеприёмников).
    • вероятность прорыва молнии в объекты системы (надёжность системы защиты определяется как 1 минус величина вероятности);
    • число ударов молнии в систему в год;
    • число прорывов молнии, минуя защиту, в год.

    Имея подобную информацию, проектировщик может сравнить требования заказчика и нормативной документации с полученной надежностью и принять меры по изменению конструкции молниезащиты.

    Заземление - ценное сооружение, защищающее владельцев домашней техники от непосредственного контакта с весьма полезным, но крайне ретивым потоком электроэнергии. Заземляющее устройство обеспечит безопасность при «отгорании» нуля, что нередко случается на загородных ЛЭП при шквальном ветре. Оно исключит риски поражений при утечках на нетоковедущие металлические детали и корпус из-за прохудившейся изоляции. Сооружение защитной системы – мероприятие, не требующее сверх усилий и супер вложений, если грамотно сделан расчет заземления. Благодаря предварительным вычислениям будущий исполнитель сможет определиться с предстоящими расходами и с целесообразностью предстоящего дела.

    Строить или не строить?

    В уже изрядно забытую пору скудного количества бытовых электроприборов владельцы частных домов редко «баловались» устройством заземления. Считалось, что с задачей отведения утечки электричества превосходно справятся естественные заземлители, такие как:

    • стальные или чугунные трубопроводы, если вокруг них не уложена изоляция, т.е. имеется непосредственный плотный контакт с почвой;
    • стальная обсадка водяной скважины;
    • металлические опоры оград, фонарей;
    • свинцовая оплетка подземных кабельных сетей;
    • арматура фундаментов, колонн, ферм, заглубленных ниже горизонта сезонного промерзания.

    Обратите внимание, что алюминиевая оболочка подземных кабельных коммуникаций не может использоваться в качестве элемента заземления, т.к. покрыта антикоррозионным слоем. Защитное покрытие препятствует рассеиванию тока в грунте.

    Оптимальным естественным заземлителем признан стальной водопровод, проложенный без изоляции. Благодаря значительной протяженности минимизируется сопротивление току растекания. К тому же наружный водопровод укладывают ниже отметки уровня сезонного промерзания. Значит, на параметры сопротивления не будут влиять морозы и засушливая летняя погода. В эти периоды уменьшается влажность грунта, и, как следствие, увеличивается сопротивление.

    Стальной каркас подземных железобетонных конструкций может служить элементом системы заземления, если:

    • с глинистым, суглинистым, супесчаным и влажным песчаным грунтом контактирует достаточная по нормам ПУЭ площадь;
    • в период сооружения фундамента арматура в двух или более местах была выведена на дневную поверхность;
    • стальные элементы данного естественного заземления были соединены между собой сваркой, а не проволочной связкой;
    • сопротивление арматуры, играющей роль электродов, рассчитано согласно требованиям ПУЭ;
    • установлена электрическая связь с заземляющей шиной.

    Без соблюдения перечисленных условий подземные ж/б сооружения не смогут выполнить функцию надежного заземления.

    Из всего набора вышеперечисленных естественных заземлителей расчетам подлежат только подземные ж/б конструкции. Точно вычислить сопротивление растеканию тока трубопроводов, металлической брони и каналов подземных силовых сетей не представляется возможным. Особенно если их прокладка осуществлялась пару десятилетий назад, и поверхность существенно изъедена коррозией.

    Эффективность естественных заземлителей определяется путем банальных измерений, для производства чего нужно вызвать сотрудника местной энергослужбы. Показания его прибора подскажут, нужен или нет владельцу загородной собственности повторный заземляющий контур в качестве дополнения к существующим мерам заземления, выполненным компанией-поставщиком электроэнергии.

    При наличии на участке естественных заземлителей с соответствующими нормам ПУЭ значениями сопротивления, устраивать защитное заземление нецелесообразно. Т.е. если прибор «агента» энергоуправления показал меньше 4 Ом, организацию контура заземления можно отложить «на потом». Однако лучше перестраховаться и предупредить вероятные риски, для чего и сооружается искусственное заземляющее устройство.

    Расчеты для устройства искусственного заземления

    Нужно признаться, что досконально рассчитать устройство заземления сложно, практически невозможно. Даже в среде профессиональных электриков практикуется метод приблизительного подбора количества электродов и расстояний между ними. Слишком много природных факторов влияет на результат работы. Уровень влажности нестабилен, зачастую доподлинно не исследована фактическая плотность и удельное сопротивление грунта и т.д. Из-за чего в конечном итоге сопротивление устроенного контура или единичного заземлителя отличается от расчетного значения.

    Эту разницу выявляют посредством тех же измерений и корректируют путем установки дополнительных электродов или путем наращивания длины единичного стержня. Однако от предварительных расчетов отказываться не стоит, потому что они помогут:

    • исключить или сократить дополнительные затраты на приобретение материала и рытье ответвлений траншей;
    • выбрать оптимальную конфигурацию системы заземления;
    • составить план действий.

    Для облегчения непростых и довольно запутанных расчетов разработано несколько программ, но для того чтобы грамотно ими воспользоваться пригодятся знания о принципе и порядке вычислений.

    Составляющие защитной системы

    Система защитного заземления представляет собой комплекс заглубленных в грунт электродов, соединенных электрической связью с заземляющей шиной. Основными ее составляющими являются:

    • один или несколько металлических стержней, передающих ток растекания земле. Чаще всего в качестве их применяются вертикально забитые в грунт отрезки длинномерного металлопроката: трубы, равнополочного уголка, круглой стали. Реже функцию электродов выполняют горизонтально зарытые в траншею трубы или листовая сталь;
    • металлическая связь, соединяющая группу заземлителей в функциональную систему. Зачастую это горизонтально расположенный заземляющий проводник из полосы, уголка или прутка. Его приваривают к верхушкам заглубленных в грунт электродов;
    • проводник, соединяющий расположенное в земле заземляющее устройство с шиной, а через нее с защищаемой техникой.

    Две последних составляющих носят общее название – «заземляющий проводник» и, по сути, выполняют одну и ту же функцию. Разница заключается в том, что металлическая связь между электродами расположена в земле, а проводник, подключающий заземление к шине, находится на дневной поверхности. Отсюда разные требования к материалам и коррозионной устойчивости, а также разброс в их стоимости.

    Принципы и правила вычислений

    Совокупность электродов и проводников, именуемая заземлением, устанавливается в грунт, который является непосредственным компонентом системы. Потому в расчетах его характеристики принимают непосредственное участие наравне с подбором длины элементов искусственного заземления.

    Алгоритм расчетов прост. Производятся они согласно имеющимся в ПУЭ формулам, в которых есть переменные единицы, зависящие от решения самостоятельного мастера, и постоянные табличные значения. Например, приблизительная величина сопротивления грунта.

    Определение оптимального контура

    Грамотный расчет защитного заземления начинается с выбора контура, который может повторять любую из геометрических фигур или обычную линию. Выбор этот зависит формы и размеров площадки, имеющейся в распоряжении мастера. Удобней и проще соорудить линейную систему, потому что для установки электродов потребуется вырыть только одну прямую траншею. Но расположенные в один ряд электроды будут экранировать, что неизбежно отразиться на токе растекания. Потому при расчетах линейного заземления в формулы вводится поправочный коэффициент.

    Самой востребованной схемой для самостоятельного признают треугольник. Расположенные в вершинах его электроды при достаточном удалении друг от друга не мешают принятому каждым из них току свободно рассеиваться в земле. Трех металлических стержней для устройства защиты частного дома считают вполне достаточным количеством. Главное их правильно расположить: забить в грунт металлические стержни нужной длины на эффективном для работы расстоянии.

    Расстояния между вертикальными электродами должны быть равными, независимо от конфигурации системы заземления. Расстояние между двумя соседними стержнями не должно быть равно их длине.

    Выбор и расчет параметров электродов и проводников

    Основными рабочими элементами защитного заземления являются вертикальные электроды, потому что рассеивать утечки тока придется именно им. Длина металлических стержней интересна, как с точки зрения эффективности защитной системы, так и с точки зрения металлоемкости и цены материала. Расстояние между ними определяет длину компонентов металлической связи: опять же расход материала для создания заземляющих проводников.

    Обратите внимание, что сопротивление вертикальных заземлителей зависит преимущественно от их длины. Поперечные размеры несущественно влияют на эффективность. Однако величина сечения нормируется ПУЭ ввиду необходимости создать износостойкую защитную систему, элементы которой не менее 5-10 лет будут постепенно разрушаться коррозией.

    Выбираем оптимальные параметры, учитывая, что лишние расходы нам вовсе не к чему. Не забываем, что чем больше метров металлопроката мы загоним в землю, тем больше пользы мы получим от контура. Метры «набрать» можно либо увеличивая длину стержней, либо увеличивая их количество. Дилемма: установка многократных заземлителей заставит изрядно потрудиться на поприще землекопа, а забивание длинных электродов кувалдой вручную превратит в крепкого молотобойца.

    Что лучше: численность или длина, выберет непосредственный исполнитель, но существуют правила, согласно которым определяется:

    • длина электродов, потому что заглубить их нужно ниже горизонта сезонного промерзания как минимум на полметра. Так нужно, чтобы работоспособность системы не слишком страдала сезонных факторов, а также от засух и дождей;
    • расстояние между вертикальными заземлителями. Оно зависит от конфигурации контура и от длины электродов. Определить его можно по таблицам.

    Отрезки металлопроката по 2,5-3 метра забивать кувалдой в землю трудно и неудобно даже с учетом того, что их 70 см будет погружено в заранее вырытую траншею. Рациональной длинной заземлителей считают 2,0м с вариациями вокруг этой цифры. Не забудьте, что длинные отрезки металлопроката нелегко и весьма накладно будет доставить на объект.

    Грамотно экономим на материале

    Уже упоминалось, что от сечения металлопроката мало что зависит, кроме цены материала. Разумней купить материал с наименьшей возможной площадью сечения. Без длительных рассуждений приведем наиболее экономичные и устойчивые к ударам кувалды варианты, это:

    • трубы с внутренним диаметром 32 мм и толщиной стенки 3 и более мм;
    • равнополочный уголок со стороной 50 или 60 мм и толщиной 4-5 мм;
    • круглая сталь с диаметром 12-16 мм.

    Для создания подземной металлической связи лучше всего подойдет стальная полоса толщиной 4 мм или 6миллиметровый пруток. Не забываем, что горизонтальные проводники нужно приварить к вершинам электродов, потому к выбранному нами расстоянию между стержнями прибавим еще по 20 см. Надземный участок заземляющего проводника можно сделать из 4миллиметровой стальной полосы шириной 12 мм. Вывести на щиток его можно от ближайшего электрода: так и копать меньше придется, и материал сэкономим.

    А вот теперь непосредственно формулы

    С формой контура и с размерами элементов мы определились. Теперь можно загнать требующиеся параметры в специальную программу для электриков или воспользоваться приведенными ниже формулами. В соответствии с типом заземлителей выбираем формулу для производства расчетов:

    Или воспользуемся универсальной формулой для расчета сопротивление одного вертикального стержня:

    Для вычислений потребуются вспомогательные таблицы с приблизительными значениями, зависящими от состава грунта, его усредненной плотности, способности удерживать влагу и от климатической зоны:

    Рассчитаем количество электродов, не учитывая значение сопротивления заземляющего горизонтального проводника:

    Вычислим параметры горизонтального элемента системы заземления – горизонтального проводника:

    Подсчитаем сопротивление вертикального электрода с учетом значения сопротивления горизонтального заземлителя:

    Согласно результатам, полученным в результате усердных вычислений, запасаемся материалом и планируем время для устройства заземления.

    Ввиду того что наибольшим сопротивлением наше защитное заземление будет обладать в засушливый и морозный период, его сооружением желательно заняться именно в это время. На строительство контура при правильной организации потратить нужно будет пару дней. Перед засыпкой траншеи надо будет проверить работоспособность системы. Это лучше сделать, когда в почве меньше всего содержится влаги. Правда, зима не слишком располагает к труду на открытых площадках, и земляные работы осложняет замерзший грунт. Значит, займемся строительством системы заземления в июле или в начале августа.

    Контур заземления необходим для защиты людей от поражения электрическим током. Для молниезащиты создается собственное заземляющее устройство, не связанное с защитным контуром заземления. Для правильной их постройки требуется расчет.

    Заземляющее устройство (ЗУ) имеет параметр, называемый сопротивлением растекания или просто – сопротивлением. Оно показывает, насколько хорошим проводником электрического тока является данное ЗУ. Для электроустановок с линейным напряжением 380 В сопротивление растекания ЗУ не должно быть более 30 Ом, на трансформаторных подстанциях – 4 Ом. Для контуров заземления медицинской техники и оборудования видеонаблюдения, серверных комнат, норма устанавливается индивидуально и составляет от 0,5 до 1 Ом.

    Задача расчета заземляющего устройства – определение количества и расположения вертикальных и горизонтальных заземлителей, достаточного для получения требуемого сопротивления.

    Определение удельного сопротивления грунта

    На результаты расчетов ЗУ оказывает существенное влияние характеристика грунта в месте его постройки, называемая удельным сопротивлением (⍴). Для каждого из видов грунта существует расчетное значение, указанное в таблице.

    На сопротивление грунта оказывают влияние влажность и температура. Зимой при максимальном промерзании и летом в засуху удельное сопротивление достигает максимальных значений. Для учета влияния погодных условий к величине ⍴ вводятся поправки для климатической зоны.


    Если есть возможность, перед расчетами производят измерение удельного сопротивления.

    Виды заземлителей и расчет их сопротивления

    Заземлители бывают естественными и искусственными, и для создания заземляющего устройства используются и те, и другие. Рассчитать влияние естественных заземлителей (железобетонных фундаментов, свай) на величину сопротивления растекания сложно, это проще сделать методом измерений на месте. Сопротивление естественных заземлителей длиной более 100 м можно узнать из таблицы.


    Если значение ⍴ отличается от 100 Ом∙м, значение R умножается на соотношение ⍴/100.

    В качестве искусственных заземлителей используются арматура, трубы, угловая или полосовая сталь. Сопротивление каждого из них рассчитывается по собственной формуле, указанной в таблице.

    Сопротивление растеканию одиночных заземлителей

    Вид заземлителя

    Расчетная формула

    Вертикальный электрод из круглой арматурной стали или трубы. Верхний конец ниже уровня земли.
    Вертикальный электрод из угловой стали. Верхний конец ниже уровня земли
    Вертикальный электрод их круглой арматурной стали или трубы. Верхний конец над уровнем земли
    Горизонтальный электрод из полосовой стали
    Горизонтальный электрод из круглой арматурной стали или трубы
    Электрод из пластины (уложена вертикально)
    Вертикальный электрод из круглой арматурной или угловой стали
    Горизонтальный электрод из круглой арматурной или полосовой стали

    Значения переменных в формулах:

    Теперь рассчитывается суммарное сопротивление штырей искусственных заземлителей:



    Вычисляем сопротивление проводника, соединяющего вертикальные заземлители по формуле:

    И полное сопротивление заземляющего устройства.


    Если рассчитанное сопротивление контура заземления оказалось недостаточным, увеличиваем количество вертикальных заземлителей или изменяем их вид. Повторяем расчет до получения требуемого значения сопротивления.

    Заземление необходимо для обеспечения безопасности в случае повреждения электроустройств, изоляции силовой проводки, замыкания проводников. Суть заземления сводится к снижению потенциала в месте прикосновения к заземлённой электроустановке до максимально допустимых значений.

    Снижение потенциала выполняется двумя способами:

    • Зануление – соединение корпуса устройства с нулевым проводником, идущим к подстанции;
    • Заземление – подсоединение корпуса к заземляющему контуру, расположенному в грунте за пределами здания.

    Первый вариант осуществляется проще, но в случае повреждения нулевого проводника перестает выполнять свои функции, а это опасно. Поэтому наличие контура заземления является обязательным условием обеспечения безопасности.

    Расчет заземления предполагает определение сопротивления заземляющего устройства, которое не должно быть больше заданного техническими нормами.

    Заземляющий контур

    Конструкция контура заземления, виды используемых материалов, ограничены условиями, которые содержатся в документах, к примеру, в ПУЭ, правилах устройства электроустановок.

    Заземляться должны все без исключения электроустановки, как на подстанции, так и на предприятии или в быту.

    Наиболее распространенной конструкцией заземляющего контура является один или несколько металлических штырей (заземлителей), заглубленных в землю и соединенных между собой сварным соединением. При помощи металлического проводника контур заземления соединяется с заземляемыми устройствами.

    В качестве заземлителей используются неокрашенные стальные или стальные обмедненные материалы, размеры которых не должны быть меньше приведенных ниже:

    • Прокат круглый – диаметр не менее 12 мм;
    • Уголок – не менее 50х50х4 мм;
    • Трубы – диаметром не менее 25 мм с толщиной стенок не менее 4 мм.

    Чем лучше проводимость заземлителей, тем эффективнее работает заземление, поэтому самый предпочтительный вариант – использование медных электродов, но на практике это не встречается, ввиду высокой стоимости меди.

    Ничем не покрытая сталь имеет высокую коррозионную способность, особенно на границе влажного грунта и воздуха, поэтому определена минимальная толщина стенок металла (4 мм).

    Оцинкованный металл хорошо сопротивляется коррозии, но не в случае протекания токов. Даже самый минимальный ток вызовет электрохимический процесс, в результате чего тонкий слой цинка прослужит минимальное время.

    Современные системы заземления выполняются на основе обмедненной стали. Поскольку количество меди для изготовления невысоко, то стоимость готовых материалов ненамного превышает стальные, а срок службы многократно возрастает.

    Наиболее распространенными конструкциями контуров заземления являются треугольное или рядное размещение электродов. Расстояние между соседними электродами должно составлять 1.2-2 м, а глубина закладки – 2-3 м. Глубина закладки (длина электродов) во многом зависит от характеристик грунта. Чем выше его электрическое сопротивление, тем глубже должны залегать электроды. В любом случае эта глубина должна превышать глубину промерзания грунта, поскольку замерзший грунт имеет высокое омическое сопротивление. То же самое относится и к участкам земли с низкой влажностью.

    Там, где возможно протекание токов высокого значения, к примеру, на подстанции или предприятии с мощным оборудованием, подход к выбору конструкции контура заземления и его расчет имеют очень большое значение для безопасности.

    Факторы сопротивления заземления

    Расчет защитного заземляющего устройства зависит от многих условий, среди которых можно выделить основные, которые используются при дальнейших расчетах:

    • Сопротивление грунта;
    • Материал электродов;
    • Глубина закладки электродов;
    • Расположение заземлителей относительно друг друга;
    • Погодные условия.

    Сопротивление грунта

    Сам по себе грунт, за несколькими исключениями, обладает низкой электропроводностью. Данная характеристика меняется, в зависимости от содержания влаги, поскольку вода с растворенными в ней солями является хорошим проводником. Таким образом, электрические свойства грунта зависят от количества содержащейся влаги, солевого состава и свойств грунта удерживать в себе влагу.

    Распространенные типы грунта и их характеристики

    Тип грунта Удельное сопротивление ρ, Ом м
    Скала 4000
    Суглинок 100
    Чернозем 30
    Песок 500
    Супесь 300
    Известняк 2000
    Садовая земля 50
    Глина 70

    Из таблицы видно, что удельное сопротивление может отличаться на несколько порядков. В реальных условиях ситуация осложняется тем, что на разных глубинах тип грунта может быть различным и без четко выраженных границ между слоями.

    Материал электродов

    Эта часть расчетов наиболее проста, поскольку при изготовлении заземления используется только несколько разновидностей материалов:

    • Сталь;
    • Медь;
    • Обмедненная сталь;
    • Оцинкованная сталь.

    Медь в чистом виде не используется по причине высокой стоимости, наиболее часто применяемые материалы – это чистая и оцинкованная сталь. В последнее время все чаще стали встречаться системы заземления, в которых используется сталь, покрытая слоем меди. Такие электроды имеют наименьшее сопротивление, которое имеет хорошую стабильность во времени, поскольку медный слой хорошо сопротивляется коррозии.

    Наихудшие характеристики имеет ничем не покрытая сталь, поскольку слой коррозии (ржавчина) увеличивает переходное сопротивление на границе электрод-грунт.

    Глубина закладки

    От глубины закладки электродов зависят линейная протяженность границы касания электрода и грунта и величина слоя земли, который участвует в цепи протекания тока. Чем больше этот слой, тем меньшее значение сопротивления он будет иметь.

    На заметку. Кроме этого при установке электродов следует иметь в виду, что чем глубже они располагаются, тем ближе будут находиться к водоносному слою.

    Расположение электродов

    Данная характеристика наименее очевидна и трудна для понимания. Следует знать, что каждый электрод заземления имеет некоторое влияние на соседние, и чем ближе они будут расположены, тем меньше будет их эффективность. Точное обоснование эффекта довольно сложное, просто следует его учитывать при расчетах и строительстве.

    Проще объяснить зависимость эффективности от количества электродов. Здесь можно привести аналогию с параллельно соединенными резисторами. Чем их больше, тем меньше суммарное сопротивление.

    Погодные условия

    Наилучшие параметры заземляющее устройство имеет при повышенной влажности грунта. В сухую и морозную погоду сопротивление грунта резко возрастает и при достижении некоторых условий (полное высыхание или промерзание) принимает максимальное значение.

    Обратите внимание! Для того чтобы минимизировать влияние погодных условий, глубина закладки электродов должна быть ниже максимальной глубины промерзания зимой или доходить до водоносного слоя для исключения пересыхания.

    Важно! Последующие расчеты необходимо производить для наихудших условий эксплуатации, поскольку во всех иных случаях сопротивление заземления будет снижаться.

    Методика расчета

    Основным параметром расчета является необходимое значение сопротивления заземления, которое регламентируется нормативными документами, в зависимости от величины напряжения питания, типа электроустановок, условий их использования.

    Строгий расчет защитного заземления, который дает значения количества и длины электродов, не существует, поэтому он выполняется на основе некоторых приближенных данных и допусков.

    Для начала учитывается тип грунта, и определяется примерная длина электродов заземления, их материал и количество. Далее выполняется расчет, порядок которого следующий:

    • Определяется сопротивление растекания тока для одного электрода;
    • Рассчитывается количество вертикальных заземлителей с учетом их взаимного расположения.

    Одиночный заземлитель

    Сопротивление растекания тока рассчитаем, согласно формуле:

    В данном выражении:

    ρ – удельное эквивалентное сопротивление грунта;

    l – длина электрода;

    d – диаметр;

    t – расстояние от поверхности земли до центра электрода.

    При использовании уголка вместо трубы или проката принимают:

    d = b·0.95, где b – ширина полки уголка.

    Эквивалентное сопротивление многослойного грунта:

    Сезонный коэффициент зависит от климатической зоны. Также в него вносятся поправки, в зависимости от количества использованных электродов. Ориентировочные значения сезонного коэффициента составляют от 1.0 до 1.5.

    Количество электродов

    Необходимое количество электродов определяется из выражения:

    n = Rз/(К·R), где:

    • Rз – допустимое максимальное сопротивление заземляющего устройства;
    • К – коэффициент использования.

    Коэффициент использования выбирается. в соответствии с выбранным количеством заземлителей, их взаимного расположения и расстояния между ними.

    Рядное расположение электродов

    Количество
    электродов
    Коэффициент
    1 4
    6
    10
    0,66-0,72
    0,58-0,65
    0,52-0,58
    2 4
    6
    10
    0,76-0,8
    0,71-0,75
    0,66-0,71
    3 4
    6
    10
    0,84-0,86
    0,78-0,82
    0,74-0,78

    Контурное размещение электродов

    Отношение расстояния между электродами к их длине Количество
    электродов
    Коэффициент
    1 4
    6
    10
    0,84-0,87
    0,76-0,80
    0,67-0,72
    2 4
    6
    10
    0,90-0,92
    0,85-0,88
    0,79-0,83
    3 4
    6
    10
    0,93-0,95
    0,90-0,92
    0,85-0,88

    Не всегда расчет контура заземления выдает необходимое значение, поэтому, возможно, его потребуется произвести несколько раз, изменяя количество и геометрические размеры заземляющих электродов.

    Измерение заземления

    Для измерения сопротивления заземления используются специальные измерительные приборы. Правом измерения заземления обладают организации с соответствующим разрешением. Обычно это энергетические организации и лаборатории. Измеренные параметры вносятся в протокол измерения и хранятся на предприятии (в цеху, на подстанции).

    Расчет сопротивления заземления представляет сложную задачу, в которой необходимо учитывать множество условий, поэтому рациональнее воспользоваться помощью организаций, которые специализируются в данной области. Для решения задачи можно произвести расчеты на он-лайн калькуляторе, пример которых можно найти в интернете в свободном доступе. Программа калькулятора сама подскажет, какие данные необходимо учитывать при вычислениях.

    Видео

    Чтобы обеспечить частный дом необходимыми конструкциями по электробезопасностям, используют такой важный элемент, как защитное заземление. Оно необходимо для того чтобы отвести электрический ток в грунт по системе заземлителей, состоящей из горизонтальных и вертикальных электродов. В этой статье мы расскажем, как выполнить расчет заземления для частного дома, предоставив все необходимые формулы.

    Что важно знать

    Заземляющий проводник соединяет с электрическим щитом сам контур конструкции. Ниже приведены схемы:

    При проведении расчетов заземления важно обеспечить точность, чтобы не допустить ухудшения электробезопасности. Чтобы не допустить ошибки в расчетах, вы можете воспользоваться специальными в интернете, с помощью которых можно точно и быстро рассчитать нужные значения!

    На видео ниже наглядно демонстрируется пример расчетных работ в программе Электрик:

    Вот по такой методике производится расчет заземления для частного дома. Надеемся, предоставленные формулы, таблицы и схемы помогли вам самостоятельно справиться с работой!

    Наверняка вам будет интересно: