• Что можно приготовить из кальмаров: быстро и вкусно

    Проблема использования солнечной энергии с древних времен занимала лучшие умы человечества. Было понятно, что Солнце – это мощнейший источник даровой энергии, но как эту энергию использовать, не понимал никто. Если верить античным писателям Плутарху и Полибию, то первым человеком, практически использовавшим солнечную энергию, был Архимед, который с помощью изобретенных им неких оптических устройств сумел собрать солнечные лучи в мощный пучок и сжечь римский флот.

    В сущности, устройство, изобретенное великим греком, представляло собой первый концентратор солнечного излучения, который собрал солнечные лучи в один энергетический пучок. И в фокусе этого концентратора температура могла достигать 300°С - 400°С, что вполне достаточно для того, чтобы воспламенить деревянные суда римского флота. Можно только догадываться, какое именно устройство изобрел Архимед, хотя, по современным представлениям, вариантов у него было всего два.

    Уже само наименование устройства – солнечный концентратор – говорит само за себя. Этот прибор принимает солнечные лучи и собирает их в единый энергетический пучок. Самый простой концентратор всем знаком из детства. Это обычная двояковыпуклая линза, которой можно было выжигать различные фигурки, надписи, даже целые картинки, когда солнечные лучи собирались такой линзой в маленькую точку на деревянной доске, листе бумаги.

    Эта линза относится к так называемым рефракторным концентраторам. Кроме выпуклых линз к этому классу концентраторов относятся также линзы Френеля, призмы. Длиннофокусные концентраторы, построенные на основе линейных линз Френеля, несмотря на свою дешевизну, практически используются очень мало, так как обладают большими размерами. Их применение оправдано там, где габариты концентратора не являются критичными.

    Рефракторный солнечный концентратор

    Этого недостатка лишен призменный концентратор солнечного излучения. Более того, такое устройство способно концентрировать также и часть диффузного излучения, что значительно повышает мощность светового пучка. Трехгранная призма, на основе которой построен такой концентратор, является и приемником излучения и источником энергетического пучка. При этом передняя грань призмы принимает излучение, задняя грань – отражает, а из боковой грани уже выходит излучение. В основу работы такого устройства заложен принцип полного внутреннего отражения лучей до того, как они попадут на боковую грань призмы.

    В отличие от рефракторных, рефлекторные концентраторы работают по принципу сбора в энергетический пучок отраженного солнечного света. По своей конструкции они подразделяются на плоские, параболические и параболоцилиндрические концентраторы. Если говорить об эффективности каждого из этих типов, то наивысшую степень концентрации – до 10000 – дают параболические концентраторы. Но для построения систем солнечного теплоснабжения используются в основном плоские или параболоцилиндрические системы.


    Параболические (рефлекторные) солнечные концентраторы

    Практическое применение солнечных концентраторов

    Собственно, основная задача любого солнечного концентратора – собрать излучение солнца в единый энергетический пучок. А уж воспользоваться этой энергией можно различными путями. Можно даровой энергией нагревать воду, причем, количество нагретой воды будет определяться размерами и конструкцией концентратора. Небольшие параболические устройства можно использовать в качестве солнечной печи для приготовления пищи.


    Параболический концентратор в качестве солнечной печи

    Можно использовать их для дополнительного освещения солнечных батарей, чтобы повысить выходную мощность. А можно использовать в качестве внешнего источника тепла для двигателей Стирлинга. Параболический концентратор обеспечивает в фокусе температуру порядка 300°С – 400°С. Если в фокусе такого сравнительно небольшого зеркала поместить, например, подставку для чайника, сковороды, то получится солнечная печь, на которой очень быстро можно приготовить пищу, вскипятить воду. Помещенный в фокусе нагреватель с теплоносителем позволит достаточно быстро нагревать даже проточную воду, которую затем можно использовать в хозяйственных целях, например, для душа, мытья посуды.


    Простейшая схем нагрева воды солнечным концентратором

    Если в фокусе параболического зеркала поместить подходящий по мощности двигатель Стирлинга, то можно получить небольшую тепловую электростанцию. Например, фирма Qnergy разработала и пустила в серию двигатели Стирлинга QB-3500, которые предназначены для работы с солнечными концентраторами. В сущности, правильнее было бы их назвать генераторами электрического тока на базе двигателей Стирлинга. Этот агрегат вырабатывает электрический ток мощностью 3500 ватт. На выходе инвертора – стандартное напряжение 220 вольт 50 герц. Этого вполне достаточно, чтобы обеспечить электричеством дом для семьи из 4 человек, дачу.

    Кстати, используя принцип работы двигателей Стирлинга, многие умельцы своими руками делают устройства, в которых используется вращательное или возвратно-поступательное движение. Например, водяные насосы для дачи.

    Основной недостаток параболического концентратора заключается в том, что он должен быть постоянно ориентирован на солнце. В промышленных гелиевых установках применяются специальные системы слежения, которые поворачивают зеркала или рефракторы вслед за движением солнца, обеспечивая тем самым прием и концентрацию максимального количества солнечной энергии. Для индивидуального использования вряд ли будет целесообразным применять подобные следящие устройства, так как их стоимость может значительно превышать стоимость простого рефлектора на обычной треноге.

    Как сделать самому солнечный концентратор

    Самый простой способ для изготовления самодельного солнечного концентратора – это использовать старую тарелку от спутниковой антенны. Вначале нужно определиться, для каких целей будет использоваться этот концентратор, а затем, исходя из этого, выбрать место установки и подготовить соответствующим образом основание и крепления. Тщательно вымыть антенну, высушить, на приемную сторону тарелки наклеить зеркальную пленку.

    Для того, чтобы пленка легла ровно, без морщин и складок, ее следует разрезать на полоски шириной не более 3 – 5 сантиметров. Если предполагается использовать концентратор в качестве солнечной печи, то рекомендуется в центре тарелки вырезать отверстие диаметром примерно в 5 – 7 сантиметров. Через это отверстие будет пропущен кронштейн с подставкой для посуды (конфоркой). Это обеспечит неподвижность емкости с приготовляемой едой при повороте рефлектора на солнце.

    Если тарелка небольшого диаметра, то рекомендуется еще и полоски разрезать на кусочки длиной примерно по 10 см. Наклеивать каждый кусочек отдельно, тщательно подгоняя стыки. Когда отражатель будет готов, его следует установить на опору. После этого нужно будет определить точку фокуса, так как точка оптического фокуса у тарелки спутниковой антенны не всегда совпадает с позицией приемной головки.


    Самодельный солнечный концентратор – печь

    Чтобы определить точку фокуса, необходимо вооружиться темными очками, деревянной дощечкой и толстыми перчатками. Затем нужно направить зеркало прямо на солнце, поймать на дощечку солнечный зайчик и, приближая или удаляя дощечку относительно зеркала, найти точку, где этот зайчик будет иметь минимальные размеры – небольшую точку. Перчатки нужны для того, чтобы уберечь руки от ожога, если они случайно попадут в зону действия луча. Ну, а когда точка фокуса будет найдена, ее останется только зафиксировать и монтировать необходимое оборудование.

    Вариантов самостоятельного изготовления солнечных концентратором существует множество. Точно так же самому из подручных материалов можно смастерить и двигатель Стирлинга. А уж использовать этот двигатель можно для самых различных целей. На сколько хватит фантазии, желания и терпения.

    Очень давно хотелось изготовить солнечный параболический концентратор. Прочитав массу литературы по изготовлению формы для параболического зеркала, я остановился на простейшем варианте - спутниковой тарелке. Спутниковая тарелка имеет параболическую форму, которая собирает отраженные лучи в одной точке.

    За основу присмотрел Харьковские тарелки "Вариант". По приемлимой для меня цене мог приобрести только 90 сантиметровое изделие. Но цель моего опыта - высокая температура в фокусе. Для достижения хороших результатов необходима площадь зеркала - чем больше, тем лучше. Поэтому тарелка должна быть 1,5м, а лучше 2м. В ассортименте Харьковского производителя есть данные размеры, однако изготовлены они из алюминия, и соответственно цены заоблачные. Пришлось нырнуть в интернет, в поисках б/у изделия. И вот в Одессе, строители разбирая какой-то объект, предложили мне спутниковую тарелку размерами 1,36м х 1,2м., изготовленную из пластика. Немного не дотягивала до моих пожеланий, однако цена была хорошей, и я заказал одну тарелку.

    Получив через пару дней тарелку, обнаружил, что изготовлена она в США, имеет мощные ребра жесткости (я переживал, достаточно ли крепкий корпус, и не поведет ли его после наклейки зеркал), и крепкий механизм ориентирования с множеством настроек.

    Также приобрел зеркала, толщиной 3мм. Заказал 2 кв.м. - немного с запасом. Зеркала продаются в основном толщиной 4 мм., нашел троечку, чтобы легче было нарезать. Размер зеркал для концентратора решил сделать 2 х 2 см.

    После сбора основных комплектующих приступил к изготовлению подставки для концентратора. Нашлось несколько уголков, кусочков труб и профильков. Нарезав по размерам, сварил, зачистил и покрасил. Вот что получилось:

    Итак, изготовив подставку, принимаюсь за нарезку зеркал. Зеркала получил размерами 500 х 500 мм. Первым делом разрезал пополам, а потом сеткой 2 х 2 см. Перепробовал кучу стеклорезов, однако сейчас найти в магазинах, хоть что-то толковое, не представляется возможным. Новый стеклорез режет идеально 5-10 раз, и все.... После этого можно сразу выкидывать. Возможно есть какие-то профессиональные, но покупать их надо не в строительных магазинах. Поэтому, если кто-то соберется сделать концентратор из зеркал, вопрос о порезке зеркал самый трудный!

    Зеркала нарезаны, тренога готова, приступаю к поклейке зеркал! Процесс долгий и нудный. У меня количество зеркал на готовом концентраторе получилось 2480 штук. Клей выбрал неправильный. Купил специальный клей для зеркал - держит хорошо, но он густой. При наклейке, выдавливая капельку на зеркало и прижимая потом к стенке тарелки, есть вероятность неравномерно прижать зеркало(где-то сильнее, где-то слабее). От этого зеркало может быть приклеено не плотно, т.е. будет направлять свой лучик солнца не в фокус, а около него. А если фокус будет размыт - высоких результатов ждать нечего. Забегая вперед, скажу, что у меня фокус получился размытым (из чего делаю вывод о том, что необходимо было применить другой клей). Хоть и результаты опыта порадовали, но фокус был размером приблизительно около 10 см, а вокруг еще размытое пятно еще по 3-5 см. Чем меньше фокус, тем точнее фокусировка лучей, тем соответственно будет выше температура. На поклейку зеркал у меня ушло почти 3 полных дня. Площадь нарезанных зеркал составила около 1,5кв.м. Был брак, вначале, пока не приспособился - много, позже существенно меньше. Бракованные зеркала составили, наверное, не более 5 %.

    Солнечный параболический концентратор готов.

    При замерах, максимальная температура в фокусе концентратора составила не менее 616,5 градусов. Солнечные лучи помогли поджечь деревянную доску, расплавить олово, свинцовый грузик и алюминиевую пивную банку. Эксперимент я проводил 25 августа 2015 года в Харьковской области, пгт.Новая Водолага.

    В планах на следующий год (а может быть получится и в зимний период) приспособить концентратор для практических потребностей. Возможно для нагрева воды, возможно для выработки электроэнергии.

    В любом случае, всем нам природа дала мощнейший источник энергии, надо только научиться им пользоваться. Энергия солнца в тысячи раз перекрывает все потребности человечества. И если человек сможет взять хотя-бы малую часть этой энергии, то это будет величайшим достижением нашей цивилизации, благодаря которому мы сохраним нашу планету.

    Ниже представлен ролик, в котором вы увидите процесс изготовления солнечного концентратора на основе спутниковой тарелки, и опыты, которые с помощью концентратора получилось сделать.

    О том, как построить солнечный водонагреватель. Правильнее назвать его параболический солнечный концентратор. Главное преимущество его в том, что зеркало отражает 90% солнечной энергии, а его параболическая форма концентрирует эту энергию в одной точке. Эта установка будет эффективно работать в большинстве районов России, вплоть до 65 градуса с.ш.

    Для сборки коллектора нам понадобится несколько основных вещей: сама антенна, система слежения за солнцем и теплообменник-коллектор.

    Параболическая антенна.

    Можно использовать любую антенну- железную, пластиковую или из стекловолокна. Антенна должна быть панельного типа, а не сеточная. Здесь важна площадь антенны и форма. Надо помнить, мощность нагрева = площади поверхности антенны. И что мощность, собираемая антенной диаметром 1,5 м, будет в 4 раза меньше мощности собираемой антенной с площадью зеркала 3 м.

    Так же понадобится поворотный механизм для антенны в сборе. Его можно заказать на Ebay или на Aliexpress.

    Понадобится рулон алюминиевой фольги или лавсановой зеркальной пленки, применяемой для теплиц. Клей, которым пленка будет приклеиваться к параболе.

    Медная трубка диаметром 6 мм. Фитинги, для подключения горячей воды к баку, к бассейну, ну или где вы будете применять эту конструкцию. Поворотный механизм слежения автор приобрел на EBAY за 30$.

    Шаг 1 Переделка антенны для фокусировки солнечного излучения вместо радиоволн.

    Надо всего лишь прикрепить лавсановую зеркальную пленку или алюминиевую фольгу к зеркалу антенны.


    Такую пленку можно заказать на Aliexpress, если вдруг в магазинах не найдете

    Делается это почти также просто, как и звучит. Надо только учесть, что если антенна, к примеру, диаметром 2,5 м, а пленка шириной 1 м, то не надо закрывать антенну пленкой в два прохода, будут образовываться складки и неровности, которые ухудшат фокусировку солнечной энергии. Вырезайте ее небольшими полосами и закрепляйте на антенне с помощью клея. Перед наклейкой пленки убедитесь, что антенна чистая. Если есть места, где краска вздулась- зачистите их наждачной бумагой. Вам надо выровнять все неровности. Обратите внимание, чтобы LNB-конвертор был снят со своего места- иначе он может расплавиться. После наклейки пленки и установки антенны на место не приближайте руки или лицо к месту крепления головки- вы рискуете получить серьезные солнечные ожоги.

    Шаг 2 система слежения.

    Как было написано выше - автор купил систему слежения на Ebay. Вы так же можете поискать поворотные системы слежения за солнцем. Но я нашел несложную схему с копеечной ценой, которая довольно точно отслеживает положение солнца.

    Список деталей:
    (скачиваний: 450)
    * U1/U2 - LM339
    * Q1 - TIP42C
    * Q2 - TIP41C
    * Q3 - 2N3906
    * Q4 - 2N3904
    * R1 - 1meg
    * R2 - 1k
    * R3 - 10k
    * R4 - 10k
    * R5 - 10k
    * R6 - 4.7k
    * R7 - 2.7k
    * C1 - 10n керамика
    * M - DC мотор до 1А
    * LEDs - 5mm 563nm


    Видео работы гелиотракера по схеме из архива

    Сам можно сделать на основе передней ступицы автомобиля ВАЗ.

    Кому интересно фото взято отсюда:

    Шаг 3 Создание теплообменника-коллектора

    Для изготовления теплообменника понадобится медная трубка, свернутая в кольцо и помещенная в фокус нашего концентратора. Но сначала нам надо узнать размер фокальной точки тарелки. Для этого надо снять LNB-конвертер с тарелки, оставив стойки крепления конвертера. Теперь надо повернуть тарелку на солнце, предварительно закрепив кусок доски на месте крепления конвертера. Подержите доску немного в этом положении, пока не появиться дым. Это займет по времени примерно 10-15 секунд. После этого отверните антенну от солнца, снимите доску с крепления. Все манипуляции с антенной, ее развороты, проводятся для того, чтобы вы случайно не засунули руку в фокус зеркала- это опасно, можно сильно обжечься. Пусть остынет. Измерьте размер сожженной части древесины- это будет размер вашего теплообменника.


    Размер точки фокусировки будет определять, сколько медной трубки вам понадобится. Автору понадобилось 6 метров трубы при размере пятна 13см.


    Я думаю, что возможно, вместо свернутой трубки можно поставить радиатор от автомобильной печки, есть довольно маленькие радиаторы. Радиатор должен быть зачерненный для лучшего поглощения тепла. Если же вы решили использовать трубку, надо постараться согнуть ее без перегибов и изломов. Обычно для этого трубку заполняют песком, закрывают с обеих сторон и сгибают на какой-нибудь оправке подходящего диаметра. Автор залил в трубку воды и положил ее в морозильную камеру, открытыми концами вверх, чтобы вода не вытекла. Лед в трубке создаст давление изнутри, что позволит избежать изломов. Это позволит согнуть трубу с меньшим радиусом изгиба. Ее надо сворачивать по конусу- каждый виток должен быть не много большего диаметра чем предыдущий. Можно спаять витки коллектора между собой для более жесткой конструкции. И не забудьте слить воду после того, как закончите с коллектором, чтобы после установки его на место, вы не обожглись паром или горячей водой

    Шаг 4. Собираем все вместе и пробуем.


    Теперь у вас есть зеркальная парабола, модуль слежения за солнцем, помещенный в водонепроницаемый контейнер, или пластиковую емкость, законченный коллектор. Все, что осталось сделать - это установить коллектор на место и опробовать его в работе. Вы можете пойти дальше и усовершенствовать конструкцию, сделав, что-то типа кастрюли с утеплителем и одеть ее на заднюю часть коллектора. Механизм слежения должен отслеживать движение с востока на запад, т.е. поворачиваться в течение дня за солнцем. А сезонные положения светила (вверх\вниз) можно регулировать вручную один раз в неделю. Можно, конечно, добавить механизм слежения и по вертикали- тогда вы получите практически автоматическую работу установки. Если вы планируете использовать воду для подогрева бассейна или в качестве горячей воды в водопроводе- вам понадобиться насос, который будет прокачивать воду через коллектор. В случае если вы будете нагревать емкость с водой, надо принять меры, чтобы избежать закипания воды и взрыва бака. Сделать это можно используя

    Климат средней полосы России не балует ее жителей обилием прямого солнечного света. Абсолютно ясных солнечных дней в течении года бывает немного. В основном же как правило переменная облачность, когда солнце появляется на десяток – другой минут, а затем на это же время прячется за облаками и интенсивность солнечной тепловой энергии резко падает.

    Все это крайне неблагоприятно сказывается на перспективах использования солнечной энергии для организации горячего водоснабжения на даче или в загородном доме. Солнечные коллекторы и водонагреватели традиционной конфигурации просто физически неспособны эффективно нагревать воду. Потому что они основаны на принципе непрерывной циркуляции воды из накопительного бака в солнечный коллектор и обратно. И небольшой по площади солнечный коллектор площадью в 1-2 кв. метра не способен быстро нагреть большой объем воды в несколько сот литров. Это легко доказывается простейшими расчетами.

    Практически единственным выходом организовать действительно надежное горячее водоснабжение от солнечной энергии служит построение концентрирующего солнечного коллектора с малым объемом воды, нагреваемой в каждую единицу времени. Логика тут достаточно простая.

    На каждый квадратный метр поверхности падает примерно 800-1000 Ватт солнечной энергии. Возьмем нижнее значение (с учетом отражения от самого солнечного коллектора, оно, увы не нулевое). Итак, теплотворность нашего «кипятильника» 800 Ватт (или 2900 КДж). Теплоемкость воды равна 4,2 Кдж/кг*град. Теперь вспомним, за какое время электрический чайник в 1,5 КВт мощности доводить те 1,5 литра воды, что в нем помещается, до кипения. За считанные минуты! А если заставить его кипятить бочку воды? Он ее только нагревать будет часа 3-4.

    С другой стороны, нам не нужна целая бочка горячей воды и сразу. Нам в каждую минуту времени надо 2-3 литра всего. Умыться, посуду помыть… И напрашивается следующая схема нагревания воды. Относительно маломощным «чайником» мы быстро нагреваем 1-2 литра воды и сливаем ее в термос. Затем нагреваем следующую порцию и снова сливаем в термос и так далее. А для своих нужд мы используем ее из термоса. Т.е. делаем проточный водонагреватель с накоплением результата его работы. Такой он будет проточно-накопительный.

    Такая схема значительно снижает требования по мощности собственно нагревателя и в тоже время позволит иметь достаточно большой запас горячей воды в несколько десятков литров.

    Посудите сами, даже в течении 10-15 минут, когда светит солнце, мы получим около 200 Ватт-часов энергии от солнца. Это эквивалентно 720 КДж. Что позволит нагреть до 50-60 градусов примерно 4-5 литров воды (почти полведра, межлу прочим). В следующий «выход» солнца — еще 5 литров, потом еще. И так далее в течении всего дня.

    Причем чем меньше будет емкость нашего нагревателя, тем эффективнее он будет использовать солнечную энергию. Он будет ухитряться выхватывать солнечное тепло даже если оно будет выскакивать всего на несколько минут! Как говорится, с паршивой овцы хоть шерсти клок. А уже если оно будет долгим, такой нагреватель превратится в кипятильник.

    Сделать такой малоёмкий солнечный коллектор можно двумя способами. Первый — сделать очень плоский классический коллектор максимально большой площади. Например, толщиной в 1-2-3 см всего и площадью в 1-1,5 кв. метра. Но его емкость будет около 20-40 литров! Особо маленьким его не назвать. И что бы нагреть всю эту воду потребуется как минимум час солнца.

    Второй вариант — сделать концентрирующий параболический солнечный коллектор примерно такой же площади и с емкостью 2-3 литра! Тогда вода в нем будет нагреваться всего за 5-8 минут! Всего полчаса солнца — и у нас целое ведро достаточно горячей воды! Более того, концентрирующий коллектор способен собирать и рассеянную солнечную энергию, когда лучи рассеиваются дымкой и облаками.

    Теперь перейдем к конструкции. Многих пугает слово «параболический» и они думают, что сделать параболический концентратор сложно. На самом деле, сделать параболическое зеркало сможет даже школьник. К тому же концентрирующий коллектор гораздо проще даже в физическом плане. Не надо «заморачиваться» огромной и ломкой плоской «канистрой». Добиваться ее абсолютной герметичности, жесткости, обеспечивать минимальное гидродинамическое сопротивление и т.д. В параболическом солнечном водонагревателе – коллектор — простой плоский готовый металлический профиль или труба! Надо только сделать заглушки на торцы и врезать пару футорок для ввода – вывода воды. Вся остальная арматура и в в том и другом случае будет одинаковая. Само же параболическое зеркало делается из обыкновенной фанеры и оклеивается обычной бытовой фольгой для запекания. Коэффициент ее отражения ИК-лучей составляет 90-95 %!

    Существует достаточно простой способ для построения параболы. На листе фанеры мы рисуем прямой угол. Затем, по одной стороне мы наносим отметки через 1 единицу измерения (например через 100 мм, на рисунке – это буквы). А по другой — через 2 единицы (т.е через 200 мм, на рисунке это цифры). Затем соединяем отметки линиями а1, б2, в3 и т.д. Образующиеся пересечения линий и дадут нам искомую параболу. Ее естественно надо сгладить при помощи лекала. И разумеется, это только половинка параболы, которая нам нужна. Вторая — зеркальное отражение.

    Теперь, как может выглядеть концентрический параболический солнечный водонагреватель.

    Ну примерно так.

    Вода в коллектор – нагреватель поступает под небольшим давлением из напорного бака. А на выходе коллектора установлен клапан – термостат. Аналогичный по действию тому, что устанавливается в контурах охлаждения автомобилей. Т.е. он открывается тогда, когда вода нагревается до определенной температуры. Когда порция воды, находящаяся в коллекторе нагреется, термостат открывается и вода сливается в баки термосы. Как только вся горячая вода сольется и начнет идти прохладная вода, то термостат тут же закроется и коллектор начнет греть следующую порцию.

    Что бы зря не пропадало место позади параболического зеркала, баки – термосы установлены в свободных нишах и тщательно теплоизолированы. Хотя, как понимаете, это всего лишь вариант их расположения. Их можно установить в любом удобном месте, но важно тщательно утеплить трубу, ведущую к ним от коллектора.

    Вообще говоря, параболическое зеркало имеет не просто фокус, куда направляются все отраженные лучи, а так называемую фокальную плоскость. Потому что если лучи падают на параболическое зеркало не перпендикулярно, то и отражаться они будут не по центру параболы. Поэтому в устройствах с параболическими зеркалами делают гелиотрекеры, которые всегда поворачивают параболическое зеркало строго на солнце либо перемещают коллектор по фокальной плоскости (что на мой взгляд, проще).

    В садово-дачных условиях это, к сожалению, серьезно усложняет конструкцию концентрирующего солнечного коллектора. Либо придется ставить какую то автоматику, либо самом периодически, вручную, разворачивать параболическое зеркало строго на солнце.

    Определённым решением в этом случае может служить не горизонтальное, а вертикальное расположение параболического зеркала. Ведь солнце достаточно быстро перемещается по горизонтали, и очень медленно по вертикали. Поэтому, если сделать достаточно вытянутую параболу и расположить коллектор в ее фокальной плоскости, то несколько часов подряд на коллектор будет падать весь объем отраженной солнечной энергии. А регулировку по вертикали придется делать лишь раз в неделю-две, в зависимости от угла солнца над горизонтом.

    Но конечно, самым эффективным решением будет изготовление гелиотрекера, поворачивающего параболическое зеркало непосредственно на солнце.

    Внимание! Если вы будете реализовывать подобный проект, ни в коем случае не пробуйте температуру в зоне коллектора рукой, «на ощупь»!!! Температура в зоне нагрева достигает 200-300 градусов! Это все равно, что пробовать на ощупь спираль электроплитки. Во время моих экспериментов деревяшка, внесенная в зону нагрева бесшумно вспыхивала практически мгновенно. Довольно мистическое зрелище, кстати.

    Константин Тимошенко

    Задать свои вопросы и обсудить конструкцию вы можете на

    Опубліковано 09.08.2013

    Альтернативная энергетика интересует все большее количество великих умов. Я – не исключение. 🙂

    Все началось с простого вопроса: “А можно ли бесколлекторный двигатель превратить в генератор?”
    -Можно. А зачем?
    -Сделать ветрогенератор.

    Ветряк для выработки электроэнергии – не совсем удобное решение. Переменная сила ветра, зарядные устройства, аккумуляторы, инверторы, много не копеечного оборудования. В упрощенной схеме ветряк на «отлично» справляется с подогревом воды. Ибо нагрузка – тен, а он абсолютно не требователен к параметрам подаваемой на него электроэнергии. Можно избавиться от сложной дорогой электроники. Но расчеты показали значительные затраты на конструкцию, чтобы раскрутить генератор 500 Ватт.
    Мощность, которую несет в себе ветер, рассчитывается по формуле P=0,6*S*V 3 , где:
    P – мощность, Ватт
    S – площадь, м 2
    V – скорость ветра, м/с

    Ветер, дующий на 1 м2 со скоростью 2 м/с «несет» в себе энергию 4,8 Ватт. Если скорость ветра увеличится до 10 м/с, то мощность возрастет до 600 Ватт. У самых лучших ветрогенераторов КПД 40-45%. С учетом этого для генератора мощностью 500 Ватт при ветре, скажем 5 м/с. Потребуется площадь, ометаемая винтом ветрогенератора, около 12 кв.м. Что соответствует винту диаметром почти 4 метра! Много денег – мало толку. Добавить сюда необходимость получения разрешения (ограничение по шумности). Кстати, в некоторых странах установку ветряка нужно согласовывать даже с орнитологами.

    Но тут я вспомнили о Солнышке! Оно нам дарит очень много энергии. Об этом я впервые задумался после полета над замерзшим водохранилищем. Когда увидел массу льда толщиной более метра и размерами 15 на 50 километров, я подумал: “Это же сколько льда! Сколько его надо греть, чтобы расплавить!?” И все это сделает Солнце за полтора десятка дней. В справочниках можно найти плотность энергии, которая достигает поверхности земли. Цифра около 1 киловатт на метр квадратный звучит заманчиво. Но это на экваторе в ясный день. Насколько реально утилизировать солнечную энергию для хозяйственных нужд в наших широтах (центральная часть Украины), используя доступные материалы?

    Какую реальную мощность, с учетом всех потерь, можно получить с оного квадратного метра?

    Для выяснения этого вопроса я сделал первый параболический тепловой концентратор из картона (фокус в чаше параболы). Выкройку из секторов оклеил обычной пищевой фольгой. Понятно, что качество поверхности, да и отражающие способности фольги, очень далеки от идеала.

    Но задача стояла именно “колхозными” методами нагреть определенный объем воды, чтобы выяснить какую мощность можно получить с учетом всех потерь. Выкройку можно рассчитать с помощью файла Exel который я нашел на просторах интернета у любителей самостоятельно строить параболические антенны.
    Зная объем воды, её теплоемкость, начальную и конечную температуру можно рассчитать количество тепла, затраченного на ее нагрев. А, зная время нагрева, можно вычислить мощность. Зная габариты концентратора, можно определить какую практическую мощность можно получить с одного квадратного метра поверхности, на которую падает солнечный свет.

    В качестве объема для воды была взята половинка алюминиевой банки, выкрашенная снаружи в черный цвет.

    Емкость с водой помещается в фокус параболического солнечного концентратора. Солнечный концентратор ориентируется на Солнце.

    Эксперимент №1

    проводился около 7 часов утра в конце мая. Утро – далеко не идеальное время, но как раз утром в окно моей “лаборатории” светит Солнце.

    При диаметре параболы 0.31 м расчеты показали, что была получена мощность порядка 13,3 Ватт . Т.е. как минимум 177 Ватт/м.кв. Тут следует отметить, что круглая открытая банка далеко не самый лучший вариант для получения хорошего результата. Часть энергии уходит на нагрев самой банки, часть излучается в окружающую среду, в том числе уносится потоками воздуха. В общем, даже в таких далеких от идеала условиях можно хоть что-то получить.

    Эксперимент №2

    Для второго эксперимента была сделана парабола диаметром 0.6 м . В качестве ее зеркала использовался металлизированный скотч, купленный в строительном магазине. Его отражающие качества незначительно лучше алюминиевой пищевой фольги.


    Парабола имела большее фокусное расстояние (фокус за пределами чаши параболы).

    Это дало возможность спроецировать лучи на одну поверхность нагревателя и получать в фокусе большую температуру. Парабола без труда прожигает лист бумаги за несколько секунд. Эксперимент проводился около 7 часов утра в начале июня. По результатам эксперимента с тем же объемом воды и той же тарой получил мощность 28 Ватт ., что соответствует примерно 102 Ватт/м.кв . Это меньше, чем в первом эксперименте. Это объясняется тем, что солнечные лучи от параболы ложилось на круглую поверхность банки не везде оптимально. Часть лучей проходили мимо, часть падали по касательной. Банка охлаждалась свежим утренним ветерком с одной стороны, в то время как подогревалась с другой. В первом эксперименте за счет того, что фокус был внутри чаши, банка прогревалась со всех сторон.

    Эксперимент №3

    Поняв, что достойный результат можно получить, сделав правильный теплоприемник, была изготовлена следующая конструкция: банка из жести внутри выкрашена в черный цвет имеет патрубки для подвода и отвода воды. Герметично закрыта прозрачным двойным стеклом. Термоизолирована.



    Общая схема такова:

    Нагрев происходит следующим образом: лучи от солнечного концентратора (1 ) через стекло проникают внутрь банки теплоприемника (2 ), где, попадая на черную поверхность, нагревают ее. Вода, соприкасаясь с поверхностью банки, поглощает тепло. Стекло плохо пропускает инфракрасное (тепловое) излучение, поэтому потери на излучение тепла минимизированы. Поскольку со временем стекло прогревается теплой водой, и начинает излучать тепло, было применено двойное остекление. Идеальный вариант, если между стеклами будет вакуум, но это труднодостижимая задача в домашних условиях. С обратной стороны банка теплоизолирована пенопластом, что также ограничивает излучение тепловой энергии в окружающую среду.

    Теплоприемник (2 ) с помощью трубок (4,5 ) подключается к бачку (3 ) (в моем случае пластиковая бутылка). Дно бачка находится на 0.3м выше нагревателя. Такая конструкция обеспечивает конвекцию (самоциркуляцию) воды в системе.

    В идеале расширительный бак и трубки должны быть тоже термоизолированы. Эксперимент проводился около 7 часов утра в середине июня. Результаты эксперимента таковы: Мощность 96.8 Ватт , что соответствует примерно 342 Ватт/м.кв.

    Т.е. эффективность системы улучшилась более, чем в 3 раза только за счет оптимизации конструкции теплоприемника!

    При проведении экспериментов 1,2,3 нацеливание параболы на солнце делалось вручную, «наглазок». Парабола и нагревательные элементы удерживались руками. Т.е. нагреватель не всегда был в фокусе параболы, поскольку руки человека устают и начинают искать более удобное положение, которое не всегда правильное с технической точки зрения.

    Как вы могли заметить, с моей стороны были приложены усилия для обеспечения отвратительных условий для проведения эксперимента. Далеко не идеальные условия, а именно:
    – не идеальная поверхность концентраторов
    – не идеальные отражающие свойства поверхностей концентраторов
    – не идеальное ориентирование на солнце
    – не идеальное положение нагревателя
    – не идеальное время для эксперимента (утро)

    не смогли помешать получить вполне приемлемый результат для установки из подручных материалов.

    Эксперимент №4

    Далее нагревательный элемент был закреплен неподвижно относительно солнечного концентратора. Это позволило поднять мощность до 118 Ватт , что соответствует примерно 419 Ватт/м.кв . И это в утренние часы! С 7 до 8 утра!

    Существуют и другие методы нагрева воды, с помощью Солнечных коллекторов. Коллекторы с вакуумными трубками дороги, а плоские имеют большие температурные потери в холодное время года. Применение солнечных концентраторов может решить эти проблемы, однако требует реализации механизма ориентирования на Солнце. В каждом способе есть как преимущества, так и недостатки.